Rimmer Paul B, Shorttle Oliver
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK.
Cavendish Astrophysics, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK.
Life (Basel). 2019 Jan 24;9(1):12. doi: 10.3390/life9010012.
There are two dominant and contrasting classes of origin of life scenarios: those predicting that life emerged in submarine hydrothermal systems, where chemical disequilibrium can provide an energy source for nascent life; and those predicting that life emerged within subaerial environments, where UV catalysis of reactions may occur to form the building blocks of life. Here, we describe a prebiotically plausible environment that draws on the strengths of both scenarios: surface hydrothermal vents. We show how key feedstock molecules for prebiotic chemistry can be produced in abundance in shallow and surficial hydrothermal systems. We calculate the chemistry of volcanic gases feeding these vents over a range of pressures and basalt C/N/O contents. If ultra-reducing carbon-rich nitrogen-rich gases interact with subsurface water at a volcanic vent they result in 10 - 3 ⁻ 1 M concentrations of diacetylene (C₄H₂), acetylene (C₂H₂), cyanoacetylene (HC₃N), hydrogen cyanide (HCN), bisulfite (likely in the form of salts containing HSO₃), hydrogen sulfide (HS) and soluble iron in vent water. One key feedstock molecule, cyanamide (CH₂N₂), is not formed in significant quantities within this scenario, suggesting that it may need to be delivered exogenously, or formed from hydrogen cyanide either via organometallic compounds, or by some as yet-unknown chemical synthesis. Given the likely ubiquity of surface hydrothermal vents on young, hot, terrestrial planets, these results identify a prebiotically plausible local geochemical environment, which is also amenable to future lab-based simulation.
关于生命起源的设想主要有两类,它们截然不同且占据主导地位:一类预测生命起源于海底热液系统,在那里化学不平衡可为新生生命提供能量来源;另一类预测生命起源于陆地环境,在那里紫外线可催化反应形成生命的构成要素。在此,我们描述了一种结合了这两种设想优势的、在生命起源前具有合理性的环境:地表热液喷口。我们展示了生命起源前化学过程的关键原料分子是如何在浅层和地表热液系统中大量产生的。我们计算了在一系列压力以及玄武岩碳/氮/氧含量条件下,为这些喷口提供物质的火山气体的化学组成。如果超还原的富含碳和氮的气体在火山喷口与地下水相互作用,会导致喷口水中二乙炔(C₄H₂)、乙炔(C₂H₂)、氰基乙炔(HC₃N)、氰化氢(HCN)、亚硫酸氢盐(可能以含HSO₃的盐的形式存在)、硫化氢(HS)和可溶性铁的浓度达到10⁻³至1M。在这种情况下,一种关键原料分子氰胺(CH₂N₂)不会大量形成,这表明它可能需要通过外部输送,或者经由有机金属化合物由氰化氢形成,又或者通过某种未知的化学合成方式形成。鉴于年轻、炎热的类地行星上地表热液喷口可能普遍存在,这些结果确定了一种在生命起源前具有合理性且适合未来基于实验室模拟的局部地球化学环境。