Suppr超能文献

富含碳和氮的地表热液喷口中生命基石的起源

Origin of Life's Building Blocks in Carbon- and Nitrogen-Rich Surface Hydrothermal Vents.

作者信息

Rimmer Paul B, Shorttle Oliver

机构信息

Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK.

Cavendish Astrophysics, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK.

出版信息

Life (Basel). 2019 Jan 24;9(1):12. doi: 10.3390/life9010012.

Abstract

There are two dominant and contrasting classes of origin of life scenarios: those predicting that life emerged in submarine hydrothermal systems, where chemical disequilibrium can provide an energy source for nascent life; and those predicting that life emerged within subaerial environments, where UV catalysis of reactions may occur to form the building blocks of life. Here, we describe a prebiotically plausible environment that draws on the strengths of both scenarios: surface hydrothermal vents. We show how key feedstock molecules for prebiotic chemistry can be produced in abundance in shallow and surficial hydrothermal systems. We calculate the chemistry of volcanic gases feeding these vents over a range of pressures and basalt C/N/O contents. If ultra-reducing carbon-rich nitrogen-rich gases interact with subsurface water at a volcanic vent they result in 10 - 3 ⁻ 1 M concentrations of diacetylene (C₄H₂), acetylene (C₂H₂), cyanoacetylene (HC₃N), hydrogen cyanide (HCN), bisulfite (likely in the form of salts containing HSO₃), hydrogen sulfide (HS) and soluble iron in vent water. One key feedstock molecule, cyanamide (CH₂N₂), is not formed in significant quantities within this scenario, suggesting that it may need to be delivered exogenously, or formed from hydrogen cyanide either via organometallic compounds, or by some as yet-unknown chemical synthesis. Given the likely ubiquity of surface hydrothermal vents on young, hot, terrestrial planets, these results identify a prebiotically plausible local geochemical environment, which is also amenable to future lab-based simulation.

摘要

关于生命起源的设想主要有两类,它们截然不同且占据主导地位:一类预测生命起源于海底热液系统,在那里化学不平衡可为新生生命提供能量来源;另一类预测生命起源于陆地环境,在那里紫外线可催化反应形成生命的构成要素。在此,我们描述了一种结合了这两种设想优势的、在生命起源前具有合理性的环境:地表热液喷口。我们展示了生命起源前化学过程的关键原料分子是如何在浅层和地表热液系统中大量产生的。我们计算了在一系列压力以及玄武岩碳/氮/氧含量条件下,为这些喷口提供物质的火山气体的化学组成。如果超还原的富含碳和氮的气体在火山喷口与地下水相互作用,会导致喷口水中二乙炔(C₄H₂)、乙炔(C₂H₂)、氰基乙炔(HC₃N)、氰化氢(HCN)、亚硫酸氢盐(可能以含HSO₃的盐的形式存在)、硫化氢(HS)和可溶性铁的浓度达到10⁻³至1M。在这种情况下,一种关键原料分子氰胺(CH₂N₂)不会大量形成,这表明它可能需要通过外部输送,或者经由有机金属化合物由氰化氢形成,又或者通过某种未知的化学合成方式形成。鉴于年轻、炎热的类地行星上地表热液喷口可能普遍存在,这些结果确定了一种在生命起源前具有合理性且适合未来基于实验室模拟的局部地球化学环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6dc/6463091/a559e07e2dfa/life-09-00012-g0A1.jpg

相似文献

1
Origin of Life's Building Blocks in Carbon- and Nitrogen-Rich Surface Hydrothermal Vents.
Life (Basel). 2019 Jan 24;9(1):12. doi: 10.3390/life9010012.
2
A Surface Hydrothermal Source of Nitriles and Isonitriles.
Life (Basel). 2024 Apr 11;14(4):498. doi: 10.3390/life14040498.
3
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
Astrobiology. 2022 Jun;22(S1):S112-S164. doi: 10.1089/AST.2021.0113. Epub 2022 May 19.
4
Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents.
Orig Life Evol Biosph. 2017 Dec;47(4):413-425. doi: 10.1007/s11084-016-9520-3. Epub 2016 Sep 23.
5
Can Life Begin on Enceladus? A Perspective from Hydrothermal Chemistry.
Astrobiology. 2017 Sep;17(9):834-839. doi: 10.1089/ast.2016.1610. Epub 2017 Jul 6.
7
A symbiotic view of the origin of life at hydrothermal impact crater-lakes.
Phys Chem Chem Phys. 2016 Jul 27;18(30):20033-46. doi: 10.1039/c6cp00550k.
8
CO Fixation to Prebiotic Intermediates over Heterogeneous Catalysts.
Acc Chem Res. 2024 Aug 6;57(15):2038-2047. doi: 10.1021/acs.accounts.4c00151. Epub 2024 Jul 18.

引用本文的文献

1
Fundamental Role of N-O Bond-Containing Compounds in Prebiotic Synthesis.
JACS Au. 2025 Jun 10;5(6):2420-2442. doi: 10.1021/jacsau.5c00334. eCollection 2025 Jun 23.
2
Probing the Limits of Reactant Concentration and Volume in Primitive Polyphenyllactate Synthesis and Microdroplet Assembly Processes.
ACS Bio Med Chem Au. 2025 Jan 9;5(1):131-142. doi: 10.1021/acsbiomedchemau.4c00082. eCollection 2025 Feb 19.
4
Interstellar formation of lactaldehyde, a key intermediate in the methylglyoxal pathway.
Nat Commun. 2024 Nov 24;15(1):10189. doi: 10.1038/s41467-024-54562-x.
5
Exploring the influence of atmospheric CO and O levels on the utility of nitrogen isotopes as proxy for biological N fixation.
Appl Environ Microbiol. 2024 Oct 23;90(10):e0057424. doi: 10.1128/aem.00574-24. Epub 2024 Sep 25.
6
A Surface Hydrothermal Source of Nitriles and Isonitriles.
Life (Basel). 2024 Apr 11;14(4):498. doi: 10.3390/life14040498.
7
Nickel-organo compounds as potential enzyme precursors under simulated early Earth conditions.
Commun Chem. 2024 Feb 15;7(1):33. doi: 10.1038/s42004-024-01119-0.
8
Setting the geological scene for the origin of life and continuing open questions about its emergence.
Front Astron Space Sci. 2023 Jan 5;9:1095701. doi: 10.3389/fspas.2022.1095701.
9
Modern analogs for ammonia flux from terrestrial hydrothermal features to the Archean atmosphere.
Sci Rep. 2024 Jan 17;14(1):1544. doi: 10.1038/s41598-024-51537-2.

本文引用的文献

1
2
Life as a guide to prebiotic nucleotide synthesis.
Nat Commun. 2018 Dec 12;9(1):5176. doi: 10.1038/s41467-018-07220-y.
3
Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere.
Nature. 2018 Dec;564(7734):59-63. doi: 10.1038/s41586-018-0684-z. Epub 2018 Nov 7.
4
5
Green Rust: The Simple Organizing 'Seed' of All Life?
Life (Basel). 2018 Aug 27;8(3):35. doi: 10.3390/life8030035.
6
A Light-Releasable Potentially Prebiotic Nucleotide Activating Agent.
J Am Chem Soc. 2018 Jul 18;140(28):8657-8661. doi: 10.1021/jacs.8b05189. Epub 2018 Jul 3.
7
Photochemical reductive homologation of hydrogen cyanide using sulfite and ferrocyanide.
Chem Commun (Camb). 2018 May 29;54(44):5566-5569. doi: 10.1039/c8cc01499j.
8
Mimicking the surface and prebiotic chemistry of early Earth using flow chemistry.
Nat Commun. 2018 May 8;9(1):1821. doi: 10.1038/s41467-018-04147-2.
9
Sulfidic Anion Concentrations on Early Earth for Surficial Origins-of-Life Chemistry.
Astrobiology. 2018 Aug;18(8):1023-1040. doi: 10.1089/ast.2017.1770. Epub 2018 Apr 8.
10
A Hydrothermal-Sedimentary Context for the Origin of Life.
Astrobiology. 2018 Mar;18(3):259-293. doi: 10.1089/ast.2017.1680. Epub 2018 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验