Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA.
Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA.
Cell. 2019 Feb 21;176(5):1174-1189.e16. doi: 10.1016/j.cell.2018.12.024. Epub 2019 Jan 24.
The specific patterns and functional properties of electrical synapses of a nervous system are defined by the neuron-specific complement of electrical synapse constituents. We systematically examined the molecular composition of the electrical connectome of the nematode C. elegans through a genome- and nervous-system-wide analysis of the expression patterns of the invertebrate electrical synapse constituents, the innexins. We observe highly complex combinatorial expression patterns throughout the nervous system and found that these patterns change in a strikingly neuron-type-specific manner throughout the nervous system when animals enter an insulin-controlled diapause arrest stage under harsh environmental conditions, the dauer stage. By analyzing several individual synapses, we demonstrate that dauer-specific electrical synapse remodeling is responsible for specific aspects of the altered locomotory and chemosensory behavior of dauers. We describe an intersectional gene regulatory mechanism involving terminal selector and FoxO transcription factors mediating dynamic innexin expression plasticity in a neuron-type- and environment-specific manner.
神经系统中电突触的特定模式和功能特性是由神经元特有的电突触成分决定的。我们通过对无脊椎动物电突触成分连接蛋白的表达模式进行全基因组和全神经系统分析,系统地研究了线虫 C. elegans 的电连接组的分子组成。我们观察到整个神经系统中存在高度复杂的组合表达模式,并且发现在动物在恶劣环境条件下进入胰岛素控制的休眠期 dauer 阶段时,这些模式在整个神经系统中以惊人的神经元类型特异性方式发生变化。通过分析几个单个突触,我们证明 dauer 特异性电突触重塑是改变 dauer 运动和化学感觉行为的特定方面的原因。我们描述了一种交叉基因调控机制,涉及末端选择器和 FoxO 转录因子,以神经元类型和环境特异性的方式介导连接蛋白表达的动态可塑性。