Suppr超能文献

电突触的突触前耦合同步一对神经元的活动,从而协调节律性行为。

Presynaptic coupling by electrical synapses coordinates a rhythmic behavior by synchronizing the activities of a neuron pair.

机构信息

Development, Stem Cell, and Regenerative Medicine Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033.

Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033.

出版信息

Proc Natl Acad Sci U S A. 2021 May 18;118(20). doi: 10.1073/pnas.2022599118.

Abstract

Electrical synapses are specialized structures that mediate the flow of electrical currents between neurons and have well known roles in synchronizing the activities of neuronal populations, both by mediating the current transfer from more active to less active neurons and by shunting currents from active neurons to their less active neighbors. However, how these positive and negative functions of electrical synapses are coordinated to shape rhythmic synaptic outputs and behavior is not well understood. Here, using a combination of genetics, behavioral analysis, and live calcium imaging in , we show that electrical synapses formed by the gap junction protein INX-1/innexin couple the presynaptic terminals of a pair of motor neurons (AVL and DVB) to synchronize their activation in response to a pacemaker signal. Live calcium imaging reveals that /innexin mutations lead to asynchronous activation of AVL and DVB, due, in part, to loss of AVL-mediated activation of DVB by the pacemaker. In addition, loss of leads to the ectopic activation of DVB at inappropriate times during the cycle through the activation of the L-type voltage-gated calcium channel EGL-19. We propose that electrical synapses between AVL and DVB presynaptic terminals function to ensure the precise and robust execution of a specific step in a rhythmic behavior by both synchronizing the activities of presynaptic terminals in response to pacemaker signaling and by inhibiting their activation in between cycles when pacemaker signaling is low.

摘要

电突触是一种特殊的结构,介导神经元之间的电流流动,在协调神经元群体的活动方面具有重要作用,既可以通过介导从活动神经元到不活动神经元的电流传递,也可以通过将电流从活动神经元分流到其不活动的相邻神经元。然而,电突触的这些正、负功能是如何协调的,以形成有节奏的突触输出和行为,目前还不是很清楚。在这里,我们使用遗传学、行为分析和活体钙成像技术的组合,表明由间隙连接蛋白 INX-1/innexin 形成的电突触将一对运动神经元(AVL 和 DVB)的突触前末梢耦合在一起,以响应起搏信号同步它们的激活。活体钙成像揭示,/innexin 突变导致 AVL 和 DVB 的激活不同步,部分原因是起搏丧失了 AVL 对 DVB 的激活。此外,缺失 会导致 L 型电压门控钙通道 EGL-19 的激活,从而导致 DVB 在周期中的不合适时间异位激活。我们提出,AVL 和 DVB 突触前末梢之间的电突触通过响应起搏信号同步突触前末梢的活动,并在起搏信号低时抑制它们在周期之间的激活,从而确保在节律性行为的特定步骤中进行精确而稳健的执行。

相似文献

5
PKA controls calcium influx into motor neurons during a rhythmic behavior.
PLoS Genet. 2013;9(9):e1003831. doi: 10.1371/journal.pgen.1003831. Epub 2013 Sep 26.
6
INX-18 and INX-19 play distinct roles in electrical synapses that modulate aversive behavior in Caenorhabditis elegans.
PLoS Genet. 2019 Oct 28;15(10):e1008341. doi: 10.1371/journal.pgen.1008341. eCollection 2019 Oct.
7
OFF-responses of interneurons optimize avoidance behaviors depending on stimulus strength via electrical synapses.
PLoS Genet. 2018 Jun 25;14(6):e1007477. doi: 10.1371/journal.pgen.1007477. eCollection 2018 Jun.
8
Dissection of neuronal gap junction circuits that regulate social behavior in .
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):E1263-E1272. doi: 10.1073/pnas.1621274114. Epub 2017 Jan 31.
9
Six innexins contribute to electrical coupling of C. elegans body-wall muscle.
PLoS One. 2013 Oct 9;8(10):e76877. doi: 10.1371/journal.pone.0076877. eCollection 2013.

引用本文的文献

2
Configuration of electrical synapses filters sensory information to drive behavioral choices.
Cell. 2025 Jan 9;188(1):89-103.e13. doi: 10.1016/j.cell.2024.11.037. Epub 2024 Dec 31.
3
Cellular mechanisms of synchronized rhythmic burst generation in the ventromedial hypothalamus.
Pflugers Arch. 2025 Jan;477(1):131-145. doi: 10.1007/s00424-024-03031-x. Epub 2024 Oct 14.
4
Tools and methods for cell ablation and cell inhibition in Caenorhabditis elegans.
Genetics. 2025 Jan 8;229(1):1-48. doi: 10.1093/genetics/iyae119.
5
A leak K channel TWK-40 sustains the rhythmic motor program.
PNAS Nexus. 2024 Jun 12;3(7):pgae234. doi: 10.1093/pnasnexus/pgae234. eCollection 2024 Jul.
6
Understanding neural circuit function through synaptic engineering.
Nat Rev Neurosci. 2024 Feb;25(2):131-139. doi: 10.1038/s41583-023-00777-8. Epub 2024 Jan 3.
7
UBR-1 ubiquitin ligase regulates the balance between GABAergic and glutamatergic signaling.
EMBO Rep. 2023 Nov 6;24(11):e57014. doi: 10.15252/embr.202357014. Epub 2023 Oct 9.
10
Intrinsic Sources and Functional Impacts of Asymmetry at Electrical Synapses.
eNeuro. 2022 Mar 11;9(2). doi: 10.1523/ENEURO.0469-21.2022. Print 2022 Mar-Apr.

本文引用的文献

1
Beyond plasticity: the dynamic impact of electrical synapses on neural circuits.
Nat Rev Neurosci. 2019 May;20(5):253-271. doi: 10.1038/s41583-019-0133-5.
2
Plasticity of the Electrical Connectome of C. elegans.
Cell. 2019 Feb 21;176(5):1174-1189.e16. doi: 10.1016/j.cell.2018.12.024. Epub 2019 Jan 24.
3
The CeNGEN Project: The Complete Gene Expression Map of an Entire Nervous System.
Neuron. 2018 Aug 8;99(3):430-433. doi: 10.1016/j.neuron.2018.07.042.
4
Synchrony and so much more: Diverse roles for electrical synapses in neural circuits.
Dev Neurobiol. 2017 May;77(5):610-624. doi: 10.1002/dneu.22493. Epub 2017 Mar 14.
5
Gap junctions in C. elegans: Their roles in behavior and development.
Dev Neurobiol. 2017 May;77(5):587-596. doi: 10.1002/dneu.22408. Epub 2016 Jun 22.
7
Nonlinear Spatiotemporal Integration by Electrical and Chemical Synapses in the Retina.
Neuron. 2016 Apr 20;90(2):320-32. doi: 10.1016/j.neuron.2016.03.012. Epub 2016 Apr 7.
8
Electrical synapses and the development of inhibitory circuits in the thalamus.
J Physiol. 2016 May 15;594(10):2579-92. doi: 10.1113/JP271880. Epub 2016 Mar 23.
10
Pannexin-1 channels show distinct morphology and no gap junction characteristics in mammalian cells.
Cell Tissue Res. 2016 Mar;363(3):751-63. doi: 10.1007/s00441-015-2281-x. Epub 2015 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验