文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用具有广谱活性的菌株对细菌性植物病害进行生物防治。

Biological control of bacterial plant diseases with strains selected for their broad-spectrum activity.

作者信息

Daranas Núria, Roselló Gemma, Cabrefiga Jordi, Donati Irene, Francés Jesús, Badosa Esther, Spinelli Francesco, Montesinos Emilio, Bonaterra Anna

机构信息

Institute of Food and Agricultural Technology-CIDSAV-XaRTA University of Girona Girona Spain.

Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum University of Bologna Bologna Italy.

出版信息

Ann Appl Biol. 2019 Jan;174(1):92-105. doi: 10.1111/aab.12476. Epub 2018 Nov 26.


DOI:10.1111/aab.12476
PMID:30686827
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6334523/
Abstract

The use of lactic acid bacteria (LAB) to control multiple pathogens that affect different crops was studied, namely, pv. in kiwifruit, pv. in and in strawberry. A screening procedure based on in vitro and assays of the three bacterial pathogens was successful in selecting potential LAB strains as biological control agents. The antagonistic activity of 55 strains was first tested in vitro and the strains CC100, PM411 and TC92, and CM160 and CM209 were selected because of their broad-spectrum activity. The biocontrol efficacy of the selected strains was assessed using a multiple-pathosystem approach in greenhouse conditions. L. plantarum PM411 and TC92 prevented all three pathogens from infecting their corresponding plant hosts. In addition, the biocontrol performance of PM411 and TC92 was comparable to the reference products (Bacillus amyloliquefaciens D747, QST713, chitosan, acibenzolar-S-methyl, copper and kasugamycin) in semi-field and field experiments. The in vitro inhibitory mechanism of PM411 and TC92 is based, at least in part, on a pH lowering effect and the production of lactic acid. Moreover, both strains showed similar survival rates on leaf surfaces. PM411 and TC92 can easily be distinguished because of their different multilocus sequence typing and random amplified polymorphic DNA profiles.

摘要

研究了利用乳酸菌(LAB)来控制影响不同作物的多种病原体,即猕猴桃中的丁香假单胞菌猕猴桃致病变种、番茄中的番茄细菌性斑点病菌和草莓中的草莓疫霉病菌。基于对这三种细菌病原体的体外和体内试验的筛选程序成功地选出了潜在的乳酸菌菌株作为生物防治剂。首先在体外测试了55株菌株的拮抗活性,由于其广谱活性,选出了植物乳杆菌CC100、PM411和TC92,以及弯曲乳杆菌CM160和CM209。在温室条件下,采用多病原系统方法评估了所选菌株的生物防治效果。植物乳杆菌PM411和TC92可防止所有三种病原体感染其相应的植物宿主。此外,在半田间和田间试验中,PM411和TC92的生物防治性能与参考产品(解淀粉芽孢杆菌D747、丁香假单胞菌QST713、壳聚糖、烯丙苯噻唑、铜和春雷霉素)相当。PM411和TC92的体外抑制机制至少部分基于pH降低效应和乳酸的产生。此外,这两种菌株在叶表面的存活率相似。由于它们不同的多位点序列分型和随机扩增多态性DNA图谱,PM411和TC92很容易区分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6172/6334523/97f467302bf2/AAB-174-92-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6172/6334523/3e93eca262a8/AAB-174-92-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6172/6334523/aaa79e20369d/AAB-174-92-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6172/6334523/fbbada1bb084/AAB-174-92-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6172/6334523/a6fa40cc83f4/AAB-174-92-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6172/6334523/e60f3bbedea8/AAB-174-92-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6172/6334523/97f467302bf2/AAB-174-92-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6172/6334523/3e93eca262a8/AAB-174-92-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6172/6334523/aaa79e20369d/AAB-174-92-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6172/6334523/fbbada1bb084/AAB-174-92-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6172/6334523/a6fa40cc83f4/AAB-174-92-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6172/6334523/e60f3bbedea8/AAB-174-92-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6172/6334523/97f467302bf2/AAB-174-92-g006.jpg

相似文献

[1]
Biological control of bacterial plant diseases with strains selected for their broad-spectrum activity.

Ann Appl Biol. 2019-1

[2]
Enhancing water stress tolerance improves fitness in biological control strains of Lactobacillus plantarum in plant environments.

PLoS One. 2018-1-5

[3]
Monitoring Viable Cells of the Biological Control Agent Lactobacillus plantarum PM411 in Aerial Plant Surfaces by Means of a Strain-Specific Viability Quantitative PCR Method.

Appl Environ Microbiol. 2018-5-1

[4]
First Report of Shot-Hole on Flowering Cherry Caused by and pv. .

Plant Dis. 2021-12

[5]
Development of an efficient real-time quantitative PCR protocol for detection of Xanthomonas arboricola pv. pruni in Prunus species.

Appl Environ Microbiol. 2010-10-29

[6]
Lateral flow immunoassay for on-site detection of Xanthomonas arboricola pv. pruni in symptomatic field samples.

PLoS One. 2017-4-27

[7]
Copper Tolerance in pv. in South Carolina Peach Orchards.

Plant Dis. 2022-6

[8]
First Report of Pseudomonas syringae pv. actinidiae, the Causal Agent of Bacterial Canker of Kiwifruit in Slovenia.

Plant Dis. 2014-11

[9]
First Report of Xanthomonas arboricola pv. pruni in Ornamental Prunus laurocerasus in the Netherlands.

Plant Dis. 2012-5

[10]
Effects of leaf wetness duration and temperature on infection of Prunus by Xanthomonas arboricola pv. pruni.

PLoS One. 2018-3-7

引用本文的文献

[1]
Unlocking the potential of ecofriendly guardians for biological control of plant diseases, crop protection and production in sustainable agriculture.

3 Biotech. 2025-4

[2]
Evaluation of several strategies for controlling canker plant disease caused by .

Mol Biol Res Commun. 2025

[3]
Lactic acid bacteria: A sustainable solution against phytopathogenic agents.

Environ Microbiol Rep. 2024-12

[4]
Effects of Kimchi-Derived Lactic Acid Bacteria on Reducing Biological Hazards in Kimchi.

J Microbiol Biotechnol. 2024-12-28

[5]
An insight into pathogenicity and virulence gene content of spp. and its biocontrol strategies.

Heliyon. 2024-7-8

[6]
Divergence of Phyllosphere Microbial Community Assemblies and Components of Volatile Organic Compounds between the Invasive , the Native and Their Hybrids, and Its Implications for Invasiveness.

Genes (Basel). 2024-7-20

[7]
Lactic acid bacteria as an eco-friendly approach in plant production: Current state and prospects.

Folia Microbiol (Praha). 2024-6

[8]
Time-Course Responses of Apple Leaf Endophytes to the Infection of .

J Fungi (Basel). 2024-2-3

[9]
Scientific and technological advances in the development of sustainable disease management tools: a case study on kiwifruit bacterial canker.

Front Plant Sci. 2024-1-11

[10]
Colonization and population dynamics of total, viable, and culturable cells of two biological control strains applied to apricot, peach, and grapevine crops.

Front Microbiol. 2024-1-5

本文引用的文献

[1]
Disease Progress, Yield Loss, and Control of Xanthomonas fragariae on Strawberry Plants.

Plant Dis. 1997-8

[2]
Phytotoxicity of Copper-Based Bactericides to Peach and Nectarine.

Plant Dis. 2007-9

[3]
Field Evaluation of Biological Control of Fire Blight in the Eastern United States.

Plant Dis. 2009-4

[4]
Xanthomonas arboricola Diseases of Stone Fruit, Almond, and Walnut Trees: Progress Toward Understanding and Management.

Plant Dis. 2014-12

[5]
Monitoring Viable Cells of the Biological Control Agent Lactobacillus plantarum PM411 in Aerial Plant Surfaces by Means of a Strain-Specific Viability Quantitative PCR Method.

Appl Environ Microbiol. 2018-5-1

[6]
Enhancing water stress tolerance improves fitness in biological control strains of Lactobacillus plantarum in plant environments.

PLoS One. 2018-1-5

[7]
Evolution of copper resistance in the kiwifruit pathogen Pseudomonas syringae pv. actinidiae through acquisition of integrative conjugative elements and plasmids.

Environ Microbiol. 2017-2-1

[8]
Biological relevance of volatile organic compounds emitted during the pathogenic interactions between apple plants and Erwinia amylovora.

Mol Plant Pathol. 2017-1-13

[9]
Inhibition of , Causative Agent of Angular Leaf Spot of Strawberry, through Iron Deprivation.

Front Microbiol. 2016-10-13

[10]
Epidemiology and Control of Strawberry Bacterial Angular Leaf Spot Disease Caused by Xanthomonas fragariae.

Plant Pathol J. 2016-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索