Massachusetts Institute of Technology, Department of Chemical Engineering, Cambridge, MA 02139, USA.
Nanoscale. 2019 Feb 7;11(6):2925-2937. doi: 10.1039/c8nr10366f.
The nanometer placement of nanomaterials, such as nanoribbons and nanotubes, at a specific pitch and orientation on a surface, remains an unsolved fundamental problem in nanotechnology. In this work, we introduce and analyze the concept of a direct-write chemical vapor deposition (CVD) system that enables the in-place synthesis of such structures with control over orientation and characteristic features. A nanometer scale pore or conduit, called the nanonozzle, delivers precursor gases for CVD locally on a substrate, with spatial translation of either the nozzle or the substrate to enable a novel direct write (DW) tool. We analyze the nozzle under conditions where it delivers reactants to a substrate while translating at a constant velocity over the surface at a fixed reaction temperature. We formulate and solve a multi-phase three-dimensional reaction and diffusion model of the direct-write operation, and evaluate specific analytically-solvable limits to determine the allowable operating conditions, including pore dimensions, reactant flow rates, and nozzle translation speed. A Buckingham Π analysis identifies six dimensionless quantities crucial for the design and operation of the direct-write synthesis process. Importantly, we derive and validate what we call the ribbon extension inequality that brackets the allowable nozzle velocity relative to the CVD growth rate - a key constraint to enabling direct-write operation. Lastly, we include a practical analysis using attainable values towards the experimental design of such a system, building the nozzle around a commercially available near-field scanning optical microscopy (NSOM) tip as a feasible example.
纳米材料(如纳米带和纳米管)在表面上以特定的螺距和取向进行纳米级定位,这仍然是纳米技术中的一个未解决的基本问题。在这项工作中,我们介绍并分析了一种直接写入化学气相沉积(CVD)系统的概念,该系统能够控制取向和特征来原位合成这种结构。一个纳米尺度的孔或管道,称为纳米喷嘴,在基底上局部输送 CVD 的前体气体,通过喷嘴或基底的空间平移来实现一种新颖的直接写入(DW)工具。我们分析了在喷嘴以恒定速度在表面上平移的同时向基底输送反应物的条件,固定在一个固定的反应温度下。我们制定并解决了直接写入操作的多相三维反应和扩散模型,并评估了具体的可解析极限,以确定允许的操作条件,包括孔尺寸、反应物流速和喷嘴平移速度。 Buckingham Π 分析确定了对于直接写入合成过程的设计和操作至关重要的六个无量纲量。重要的是,我们推导出并验证了我们所谓的“带延伸不等式”,该不等式限制了相对于 CVD 生长速率的允许喷嘴速度 - 这是实现直接写入操作的关键约束。最后,我们包括了一个实际分析,使用可达到的值来进行这样的系统的实验设计,以商用近场扫描光学显微镜(NSOM)探头为基础构建喷嘴作为一个可行的例子。