Zhang Shuai, Xu Guizhi, Duan Chongfeng, Zhou Xiaoming, Wang Xin, Yu Haiyang, Yu Lan, Li Zhiming, Gao Yuanxiang, Zhao Ruirui, Jiao Linlin, Wang Gang
Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China.
Department of Radiology, Zhucheng People Hospital, Zhucheng Shandong, China.
Biomed Res Int. 2021 Jan 7;2021:6685723. doi: 10.1155/2021/6685723. eCollection 2021.
PURPOSE: To investigate whether the radiomics analysis of MR imaging in the hepatobiliary phase (HBP) can be used to predict microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC). METHOD: A total of 130 patients with HCC, including 80 MVI-positive patients and 50 MVI-negative patients, who underwent MR imaging with Gd-EOB-DTPA were enrolled. Least absolute shrinkage and selection operator (LASSO) regression was applied to select radiomics parameters derived from MR images obtained in the HBP 5 min, 10 min, and 15 min images. The selected features at each phase were adopted into support vector machine (SVM) classifiers to establish models. Multiple comparisons of the AUCs at each phase were performed by the Delong test. The decision curve analysis (DCA) was used to analyze the classification of MVI-positive and MVI-negative patients. RESULTS: The most predictive features between MVI-positive and MVI-negative patients included 9, 8, and 14 radiomics parameters on HBP 5 min, 10 min, and 15 min images, respectively. A model incorporating the selected features produced an AUC of 0.685, 0.718, and 0.795 on HBP 5 min, 10 min, and 15 min images, respectively. The predictive model for HBP 5 min, 10 min and 15 min showed no significant difference by the Delong test. DCA indicated that the predictive model for HBP 15 min outperformed the models for HBP 5 min and 10 min. CONCLUSIONS: Radiomics parameters in the HBP can be used to predict MVI, with the HBP 15 min model having the best differential diagnosis ability.
目的:探讨肝胆期(HBP)磁共振成像(MR成像)的放射组学分析是否可用于预测肝细胞癌(HCC)患者的微血管侵犯(MVI)。 方法:纳入130例接受钆塞酸二钠增强MR成像检查的HCC患者,其中MVI阳性患者80例,MVI阴性患者50例。采用最小绝对收缩和选择算子(LASSO)回归从HBP 5分钟、10分钟和15分钟图像中选择放射组学参数。将各期选定的特征纳入支持向量机(SVM)分类器以建立模型。采用Delong检验对各期的曲线下面积(AUC)进行多重比较。采用决策曲线分析(DCA)分析MVI阳性和MVI阴性患者的分类情况。 结果:MVI阳性和MVI阴性患者之间最具预测性的特征分别包括HBP 5分钟、10分钟和15分钟图像上的9个、8个和14个放射组学参数。纳入选定特征的模型在HBP 5分钟、10分钟和15分钟图像上的AUC分别为0.685、0.718和0.795。Delong检验显示HBP 5分钟、10分钟和15分钟的预测模型无显著差异。DCA表明HBP 15分钟的预测模型优于HBP 5分钟和10分钟的模型。 结论:HBP的放射组学参数可用于预测MVI,其中HBP 15分钟模型的鉴别诊断能力最佳。
BMC Med Imaging. 2021-6-15
Diagn Progn Res. 2019-10-4