文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

钆塞酸二钠增强磁共振成像的影像组学分析在术前预测肝细胞癌微血管侵犯中的应用:不同肝胆期延迟时间的研究与比较

Radiomics Analysis of MR Imaging with Gd-EOB-DTPA for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: Investigation and Comparison of Different Hepatobiliary Phase Delay Times.

作者信息

Zhang Shuai, Xu Guizhi, Duan Chongfeng, Zhou Xiaoming, Wang Xin, Yu Haiyang, Yu Lan, Li Zhiming, Gao Yuanxiang, Zhao Ruirui, Jiao Linlin, Wang Gang

机构信息

Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China.

Department of Radiology, Zhucheng People Hospital, Zhucheng Shandong, China.

出版信息

Biomed Res Int. 2021 Jan 7;2021:6685723. doi: 10.1155/2021/6685723. eCollection 2021.


DOI:10.1155/2021/6685723
PMID:33506029
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7810556/
Abstract

PURPOSE: To investigate whether the radiomics analysis of MR imaging in the hepatobiliary phase (HBP) can be used to predict microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC). METHOD: A total of 130 patients with HCC, including 80 MVI-positive patients and 50 MVI-negative patients, who underwent MR imaging with Gd-EOB-DTPA were enrolled. Least absolute shrinkage and selection operator (LASSO) regression was applied to select radiomics parameters derived from MR images obtained in the HBP 5 min, 10 min, and 15 min images. The selected features at each phase were adopted into support vector machine (SVM) classifiers to establish models. Multiple comparisons of the AUCs at each phase were performed by the Delong test. The decision curve analysis (DCA) was used to analyze the classification of MVI-positive and MVI-negative patients. RESULTS: The most predictive features between MVI-positive and MVI-negative patients included 9, 8, and 14 radiomics parameters on HBP 5 min, 10 min, and 15 min images, respectively. A model incorporating the selected features produced an AUC of 0.685, 0.718, and 0.795 on HBP 5 min, 10 min, and 15 min images, respectively. The predictive model for HBP 5 min, 10 min and 15 min showed no significant difference by the Delong test. DCA indicated that the predictive model for HBP 15 min outperformed the models for HBP 5 min and 10 min. CONCLUSIONS: Radiomics parameters in the HBP can be used to predict MVI, with the HBP 15 min model having the best differential diagnosis ability.

摘要

目的:探讨肝胆期(HBP)磁共振成像(MR成像)的放射组学分析是否可用于预测肝细胞癌(HCC)患者的微血管侵犯(MVI)。 方法:纳入130例接受钆塞酸二钠增强MR成像检查的HCC患者,其中MVI阳性患者80例,MVI阴性患者50例。采用最小绝对收缩和选择算子(LASSO)回归从HBP 5分钟、10分钟和15分钟图像中选择放射组学参数。将各期选定的特征纳入支持向量机(SVM)分类器以建立模型。采用Delong检验对各期的曲线下面积(AUC)进行多重比较。采用决策曲线分析(DCA)分析MVI阳性和MVI阴性患者的分类情况。 结果:MVI阳性和MVI阴性患者之间最具预测性的特征分别包括HBP 5分钟、10分钟和15分钟图像上的9个、8个和14个放射组学参数。纳入选定特征的模型在HBP 5分钟、10分钟和15分钟图像上的AUC分别为0.685、0.718和0.795。Delong检验显示HBP 5分钟、10分钟和15分钟的预测模型无显著差异。DCA表明HBP 15分钟的预测模型优于HBP 5分钟和10分钟的模型。 结论:HBP的放射组学参数可用于预测MVI,其中HBP 15分钟模型的鉴别诊断能力最佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d899/7810556/647fa357ee52/BMRI2021-6685723.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d899/7810556/0201250ed41d/BMRI2021-6685723.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d899/7810556/524441f8ee4d/BMRI2021-6685723.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d899/7810556/7e3c99e9cb67/BMRI2021-6685723.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d899/7810556/fb94792ec32b/BMRI2021-6685723.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d899/7810556/647fa357ee52/BMRI2021-6685723.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d899/7810556/0201250ed41d/BMRI2021-6685723.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d899/7810556/524441f8ee4d/BMRI2021-6685723.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d899/7810556/7e3c99e9cb67/BMRI2021-6685723.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d899/7810556/fb94792ec32b/BMRI2021-6685723.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d899/7810556/647fa357ee52/BMRI2021-6685723.005.jpg

相似文献

[1]
Radiomics Analysis of MR Imaging with Gd-EOB-DTPA for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: Investigation and Comparison of Different Hepatobiliary Phase Delay Times.

Biomed Res Int. 2021-1-7

[2]
Comparison of Conventional Gadoxetate Disodium-Enhanced MRI Features and Radiomics Signatures With Machine Learning for Diagnosing Microvascular Invasion.

AJR Am J Roentgenol. 2021-6

[3]
Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI.

Eur Radiol. 2019-1-28

[4]
Preoperative Evaluation of Gd-EOB-DTPA-Enhanced MRI Radiomics-Based Nomogram in Small Solitary Hepatocellular Carcinoma (≤3 cm) With Microvascular Invasion: A Two-Center Study.

J Magn Reson Imaging. 2022-11

[5]
Radiomics and nomogram of magnetic resonance imaging for preoperative prediction of microvascular invasion in small hepatocellular carcinoma.

World J Gastroenterol. 2022-8-21

[6]
Considerable effects of imaging sequences, feature extraction, feature selection, and classifiers on radiomics-based prediction of microvascular invasion in hepatocellular carcinoma using magnetic resonance imaging.

Quant Imaging Med Surg. 2021-5

[7]
The value of the signal intensity of peritumoral tissue on Gd-EOB-DTPA dynamic enhanced MRI in assessment of microvascular invasion and pathological grade of hepatocellular carcinoma.

Medicine (Baltimore). 2021-5-21

[8]
Radiomic analysis of Gd-EOB-DTPA-enhanced MRI predicts Ki-67 expression in hepatocellular carcinoma.

BMC Med Imaging. 2021-6-15

[9]
Comparison of non-radiomics imaging features and radiomics models based on contrast-enhanced ultrasound and Gd-EOB-DTPA-enhanced MRI for predicting microvascular invasion in hepatocellular carcinoma within 5 cm.

Eur Radiol. 2023-9

[10]
T1 mapping combined with Gd-EOB-DTPA-enhanced magnetic resonance imaging in predicting the pathologic grading of hepatocellular carcinoma.

J Biol Regul Homeost Agents. 2017

引用本文的文献

[1]
Liver tumor imaging staging: a multi-institutional study of a preoperative staging tool for hepatocellular carcinoma.

Abdom Radiol (NY). 2024-11-4

[2]
A Nomogram of Magnetic Resonance Imaging for Preoperative Assessment of Microvascular Invasion and Prognosis of Hepatocellular Carcinoma.

Dig Dis Sci. 2023-12

[3]
Comparison of non-radiomics imaging features and radiomics models based on contrast-enhanced ultrasound and Gd-EOB-DTPA-enhanced MRI for predicting microvascular invasion in hepatocellular carcinoma within 5 cm.

Eur Radiol. 2023-9

[4]
Quality of radiomics for predicting microvascular invasion in hepatocellular carcinoma: a systematic review.

Eur Radiol. 2023-5

[5]
Radiomics nomogram for prediction of microvascular invasion in hepatocellular carcinoma based on MR imaging with Gd-EOB-DTPA.

Front Oncol. 2022-11-1

[6]
Using pre-operative radiomics to predict microvascular invasion of hepatocellular carcinoma based on Gd-EOB-DTPA enhanced MRI.

BMC Med Imaging. 2022-9-3

[7]
Deep-learning-based analysis of preoperative MRI predicts microvascular invasion and outcome in hepatocellular carcinoma.

World J Surg Oncol. 2022-6-8

[8]
A Radiomics Model Based on Gd-EOB-DTPA-Enhanced MRI for the Prediction of Microvascular Invasion in Solitary Hepatocellular Carcinoma ≤ 5 cm.

Front Oncol. 2022-5-19

[9]
MRI-Based Radiomics Models to Discriminate Hepatocellular Carcinoma and Non-Hepatocellular Carcinoma in LR-M According to LI-RADS Version 2018.

Diagnostics (Basel). 2022-4-21

[10]
Radiomics models for preoperative prediction of microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis.

Abdom Radiol (NY). 2022-6

本文引用的文献

[1]
Prediction of HCC microvascular invasion with gadobenate-enhanced MRI: correlation with pathology.

Eur Radiol. 2020-10

[2]
A Radiomics Nomogram for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma.

Liver Cancer. 2019-10

[3]
A simple, step-by-step guide to interpreting decision curve analysis.

Diagn Progn Res. 2019-10-4

[4]
Gadoxetic acid-enhanced MRI as a predictor of recurrence of HCC after liver transplantation.

Eur Radiol. 2019-8-30

[5]
Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma.

J Hepatol. 2019-3-13

[6]
Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT.

Eur Radiol. 2019-2-15

[7]
Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI.

Eur Radiol. 2019-1-28

[8]
A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma.

Diagn Interv Radiol. 2018

[9]
Optimization of hepatobiliary phase delay time of Gd-EOB-DTPA-enhanced magnetic resonance imaging for identification of hepatocellular carcinoma in patients with cirrhosis of different degrees of severity.

World J Gastroenterol. 2018-1-21

[10]
A non-smooth tumor margin on preoperative imaging assesses microvascular invasion of hepatocellular carcinoma: A systematic review and meta-analysis.

Sci Rep. 2017-11-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索