Suppr超能文献

Comorbidity4j:一种用于在大型患者数据集上交互式分析疾病共病的工具。

Comorbidity4j: a tool for interactive analysis of disease comorbidities over large patient datasets.

机构信息

Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra (UPF), Barcelona, Spain.

Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.

出版信息

Bioinformatics. 2019 Sep 15;35(18):3530-3532. doi: 10.1093/bioinformatics/btz061.

Abstract

SUMMARY

Pushed by the growing availability of Electronic Health Records for data mining, the identification of relevant patterns of co-occurring diseases over a population of individuals-referred to as comorbidity analysis-has become a common practice due to its great impact on life expectancy, quality of life and healthcare costs. In this scenario, the availability of scalable, easy-to-use software frameworks tailored to support the study of comorbidities over large datasets of patients is essential. We introduce Comorbidity4j, an open-source Java tool to perform systematic analyses of comorbidities by generating interactive Web visualizations to explore and refine results. Comorbidity4j processes user-provided clinical data by identifying significant disease co-occurrences and computing a comprehensive set of comorbidity indices. Patients can be stratified by sex, age and user-defined criteria. Comorbidity4j supports the analysis of the temporal directionality and the sex ratio of diseases. The incremental upload and validation of clinical input data and the customization of comorbidity analyses are performed by an interactive Web interface. With a Web browser, the results of such analyses can be filtered with respect to comorbidity indexes and disease names and explored by means of heat maps and network charts of disease associations. Comorbidity4j is optimized to efficiently process large datasets of clinical data. Besides a software tool for local execution, we provide Comorbidity4j as a Web service to enable users to perform online comorbidity analyses.

AVAILABILITY AND IMPLEMENTATION

Doc: http://comorbidity4j.readthedocs.io/; Source code: https://github.com/fra82/comorbidity4j, Web tool: http://comorbidity.eu/comorbidity4web/.

摘要

摘要

随着电子健康记录可用于挖掘数据,识别人群中相关的共病模式(即共病分析)变得越来越普遍,因为它对预期寿命、生活质量和医疗保健成本有重大影响。在这种情况下,提供可扩展的、易于使用的软件框架,以支持对大量患者数据集的共病研究,是至关重要的。我们引入了 Comorbidity4j,这是一个开源的 Java 工具,用于通过生成交互式 Web 可视化来探索和细化结果,从而执行共病的系统分析。Comorbidity4j 通过识别显著的疾病共现并计算一整套共病指数来处理用户提供的临床数据。可以按性别、年龄和用户定义的标准对患者进行分层。Comorbidity4j 支持疾病时间方向和性别比例的分析。临床输入数据的增量上传和验证以及共病分析的定制都是通过交互式 Web 界面进行的。通过 Web 浏览器,可以根据共病指数和疾病名称过滤此类分析的结果,并通过疾病关联的热图和网络图进行探索。Comorbidity4j 经过优化,可以有效地处理大型临床数据集。除了本地执行的软件工具外,我们还提供 Comorbidity4j 作为 Web 服务,使用户能够在线进行共病分析。

可用性和实现

文档:http://comorbidity4j.readthedocs.io/;源代码:https://github.com/fra82/comorbidity4j,Web 工具:http://comorbidity.eu/comorbidity4web/。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验