Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra (UPF), Barcelona, Spain.
Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
Bioinformatics. 2019 Sep 15;35(18):3530-3532. doi: 10.1093/bioinformatics/btz061.
Pushed by the growing availability of Electronic Health Records for data mining, the identification of relevant patterns of co-occurring diseases over a population of individuals-referred to as comorbidity analysis-has become a common practice due to its great impact on life expectancy, quality of life and healthcare costs. In this scenario, the availability of scalable, easy-to-use software frameworks tailored to support the study of comorbidities over large datasets of patients is essential. We introduce Comorbidity4j, an open-source Java tool to perform systematic analyses of comorbidities by generating interactive Web visualizations to explore and refine results. Comorbidity4j processes user-provided clinical data by identifying significant disease co-occurrences and computing a comprehensive set of comorbidity indices. Patients can be stratified by sex, age and user-defined criteria. Comorbidity4j supports the analysis of the temporal directionality and the sex ratio of diseases. The incremental upload and validation of clinical input data and the customization of comorbidity analyses are performed by an interactive Web interface. With a Web browser, the results of such analyses can be filtered with respect to comorbidity indexes and disease names and explored by means of heat maps and network charts of disease associations. Comorbidity4j is optimized to efficiently process large datasets of clinical data. Besides a software tool for local execution, we provide Comorbidity4j as a Web service to enable users to perform online comorbidity analyses.
Doc: http://comorbidity4j.readthedocs.io/; Source code: https://github.com/fra82/comorbidity4j, Web tool: http://comorbidity.eu/comorbidity4web/.
随着电子健康记录可用于挖掘数据,识别人群中相关的共病模式(即共病分析)变得越来越普遍,因为它对预期寿命、生活质量和医疗保健成本有重大影响。在这种情况下,提供可扩展的、易于使用的软件框架,以支持对大量患者数据集的共病研究,是至关重要的。我们引入了 Comorbidity4j,这是一个开源的 Java 工具,用于通过生成交互式 Web 可视化来探索和细化结果,从而执行共病的系统分析。Comorbidity4j 通过识别显著的疾病共现并计算一整套共病指数来处理用户提供的临床数据。可以按性别、年龄和用户定义的标准对患者进行分层。Comorbidity4j 支持疾病时间方向和性别比例的分析。临床输入数据的增量上传和验证以及共病分析的定制都是通过交互式 Web 界面进行的。通过 Web 浏览器,可以根据共病指数和疾病名称过滤此类分析的结果,并通过疾病关联的热图和网络图进行探索。Comorbidity4j 经过优化,可以有效地处理大型临床数据集。除了本地执行的软件工具外,我们还提供 Comorbidity4j 作为 Web 服务,使用户能够在线进行共病分析。
文档:http://comorbidity4j.readthedocs.io/;源代码:https://github.com/fra82/comorbidity4j,Web 工具:http://comorbidity.eu/comorbidity4web/。