Suppr超能文献

一种使用国际疾病分类(ICD)诊断代码识别重症监护病房(ICU)患者亚群的可视化分析方法。

A visual analytic approach for the identification of ICU patient subpopulations using ICD diagnostic codes.

作者信息

Alcaide Daniel, Aerts Jan

机构信息

Department of Electrical Engineering (ESAT) STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium.

UHasselt, I-BioStat, Data Science Institute, Hasselt, Belgium.

出版信息

PeerJ Comput Sci. 2021 Apr 6;7:e430. doi: 10.7717/peerj-cs.430. eCollection 2021.

Abstract

A large number of clinical concepts are categorized under standardized formats that ease the manipulation, understanding, analysis, and exchange of information. One of the most extended codifications is the International Classification of Diseases (ICD) used for characterizing diagnoses and clinical procedures. With formatted ICD concepts, a patient profile can be described through a set of standardized and sorted attributes according to the relevance or chronology of events. This structured data is fundamental to quantify the similarity between patients and detect relevant clinical characteristics. Data visualization tools allow the representation and comprehension of data patterns, usually of a high dimensional nature, where only a partial picture can be projected. In this paper, we provide a visual analytics approach for the identification of homogeneous patient cohorts by combining custom distance metrics with a flexible dimensionality reduction technique. First we define a new metric to measure the similarity between diagnosis profiles through the concordance and relevance of events. Second we describe a variation of the Simplified Topological Abstraction of Data (STAD) dimensionality reduction technique to enhance the projection of signals preserving the global structure of data. The MIMIC-III clinical database is used for implementing the analysis into an interactive dashboard, providing a highly expressive environment for the exploration and comparison of patients groups with at least one identical diagnostic ICD code. The combination of the distance metric and STAD not only allows the identification of patterns but also provides a new layer of information to establish additional relationships between patient cohorts. The method and tool presented here add a valuable new approach for exploring heterogeneous patient populations. In addition, the distance metric described can be applied in other domains that employ ordered lists of categorical data.

摘要

大量临床概念被归类于标准化格式之下,这些格式便于信息的处理、理解、分析及交换。最广泛使用的编码体系之一是用于描述诊断和临床程序的《国际疾病分类》(ICD)。借助格式化的ICD概念,可根据事件的相关性或时间顺序,通过一组标准化且分类的属性来描述患者概况。这种结构化数据对于量化患者之间的相似性以及检测相关临床特征至关重要。数据可视化工具能够呈现和理解通常具有高维度性质的数据模式,而在这种模式下只能投射出部分图像。在本文中,我们提供了一种视觉分析方法,通过将自定义距离度量与灵活的降维技术相结合来识别同质患者队列。首先,我们定义一种新的度量,通过事件的一致性和相关性来衡量诊断概况之间的相似性。其次,我们描述了一种数据简化拓扑抽象(STAD)降维技术的变体,以增强保留数据全局结构的信号投影。MIMIC - III临床数据库用于将分析实现到交互式仪表板中,为探索和比较具有至少一个相同诊断ICD代码的患者组提供了一个极具表现力的环境。距离度量和STAD的结合不仅能够识别模式,还提供了一层新信息来建立患者队列之间的额外关系。本文介绍的方法和工具为探索异质患者群体增添了一种有价值的新方法。此外,所描述的距离度量可应用于其他使用分类数据有序列表的领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4029/8049127/817841e6a4b0/peerj-cs-07-430-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验