Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (IAL, CONICET-UNL) & FBCB, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina.
Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (IAL, CONICET-UNL) & FBCB, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina.
Biochimie. 2019 Mar;158:238-245. doi: 10.1016/j.biochi.2019.01.013. Epub 2019 Jan 26.
Nitrosomonas europaea is a chemolithotroph that obtains energy through the oxidation of ammonia to hydroxylamine while assimilates atmospheric CO to cover the cell carbon demands for growth. This microorganism plays a relevant role in the nitrogen biogeochemical cycle on Earth but its carbon metabolism remains poorly characterized. Based on sequence homology, we identified two genes (cbbG and gabD) coding for redox enzymes in N. europaea. Cloning and expression of the genes in Escherichia coli, allowed the production of recombinant enzymes purified to determine their biochemical properties. The protein CbbG is a glyceraldehyde-3-phosphate (Ga3P) dehydrogenase (Ga3PDHase) catalyzing the reversible oxidation of Ga3P to 1,3-bis-phospho-glycerate (1,3bisPGA), using specifically NAD/NADH as cofactor. CbbG showed ∼6-fold higher K value for 1,3bisPGA but ∼5-fold higher k for the oxidation of Ga3P. The protein GabD irreversibly oxidizes Ga3P to 3Pglycerate using NAD or NADP, thus resembling a non-phosphorylating Ga3PDHase. However, the enzyme showed ∼6-fold higher K value and three orders of magnitude higher catalytic efficiency with succinate semialdehyde (SSA) and NADP. Indeed, the GabD protein identity corresponds to an SSA dehydrogenase (SSADHase). CbbG seems to be the only Ga3PDHase present in N. europaea; which would be involved in reducing triose-P during autotrophic carbon fixation. Otherwise, in cells grown under conditions deprived of ammonia and oxygen, the enzyme could catalyze the glycolytic step of Ga3P oxidation producing NADH. As an SSADHase, GabD would physiologically act producing succinate and preferentially NADPH over NADH; thus being part of an alternative pathway of the tricarboxylic acid cycle converting α-ketoglutarate to succinate. The properties determined for these enzymes contribute to better identify metabolic steps in CO assimilation, glycolysis and the tricarboxylic acid cycle in N. europaea. Results are discussed in the framework of metabolic pathways that launch biosynthetic intermediates relevant in the microorganism to develop and fulfill its role in nature.
欧洲亚硝化单胞菌是一种化能自养生物,通过将氨氧化为羟胺来获取能量,同时将大气中的 CO 同化来满足细胞生长的碳需求。这种微生物在地球的氮生物地球化学循环中起着重要作用,但它的碳代谢仍未得到充分描述。基于序列同源性,我们在欧洲亚硝化单胞菌中鉴定出两个编码氧化还原酶的基因(cbbG 和 gabD)。在大肠杆菌中克隆和表达这些基因,允许生产出纯化的重组酶,以确定其生化特性。CbbG 蛋白是一种甘油醛-3-磷酸(Ga3P)脱氢酶(Ga3PDHase),它使用特异性的 NAD/NADH 作为辅助因子,催化 Ga3P 可逆氧化为 1,3-双磷酸甘油酸(1,3bisPGA)。CbbG 对 1,3bisPGA 的 K 值约高 6 倍,但对 Ga3P 的氧化 k 值约高 5 倍。GabD 蛋白不可逆地将 Ga3P 氧化为 3-磷酸甘油酸,使用 NAD 或 NADP,因此类似于非磷酸化的 Ga3PDHase。然而,该酶对琥珀酸半醛(SSA)和 NADP 的 K 值约高 6 倍,催化效率高三个数量级。事实上,GabD 蛋白的身份对应于琥珀酸脱氢酶(SSADHase)。CbbG 似乎是欧洲亚硝化单胞菌中唯一存在的 Ga3PDHase;它将参与自养碳固定过程中还原三碳糖。否则,在缺乏氨和氧的条件下生长的细胞中,该酶可以催化 Ga3P 氧化的糖酵解步骤,产生 NADH。作为 SSADHase,GabD 将生理上产生琥珀酸,并优先产生 NADPH 而不是 NADH;因此,它是三羧酸循环的替代途径的一部分,将 α-酮戊二酸转化为琥珀酸。这些酶的特性有助于更好地确定欧洲亚硝化单胞菌中 CO 同化、糖酵解和三羧酸循环的代谢步骤。结果在代谢途径的框架内进行了讨论,这些代谢途径为微生物的生物合成中间产物提供了启动,使其在自然界中发挥作用并满足其功能。