Piattoni Claudia V, Guerrero Sergio A, Iglesias Alberto A
Instituto de Agrobiotecnología del Litoral (IAL, CONICET-UNL), FBCB, Paraje "El Pozo", CC 242, Santa Fe S3000ZAA, Argentina.
Int J Mol Sci. 2013 Apr 12;14(4):8073-92. doi: 10.3390/ijms14048073.
Adaptation to aerobic life leads organisms to sense reactive oxygen species and use the signal for coordination of the entire metabolism. Glycolysis in plants is a particular network where specific steps, like oxidation of glyceraldehydes-3-phosphate (Ga3P), are critical in order for it to function. The triose-phosphate can be converted into 3-phosphoglycerate through the phosphorylating Ga3P dehydrogenase (Ga3PDHase, EC 1.2.1.12) producing ATP and NADH, or via the non-phosphorylating enzyme (np-Ga3PDHase; EC 1.2.1.9) generating NADPH. In this work we found redox regulation to be a posttranslational mechanism allowing the fine-tuning of the triose-phosphate fate. Both enzymes were inactivated after oxidation by reactive oxygen and nitrogen species. Kinetic studies determined that Ga3PDHase is marked (63-fold) more sensitive to oxidants than np-Ga3PDHase. Thioredoxin-h reverted the oxidation of both enzymes (although with differences between them), suggesting a physiological redox regulation. The results support a metabolic scenario where the cytosolic triose-phosphate dehydrogenases are regulated under changeable redox conditions. This would allow coordinate production of NADPH or ATP through glycolysis, with oxidative signals triggering reducing power synthesis in the cytosol. The NADPH increment would favor antioxidant responses to cope with the oxidative situation, while the thioredoxin system would positively feedback NADPH production by maintaining np-Ga3PDHase at its reduced active state.
对有氧生活的适应使生物体能够感知活性氧,并利用该信号来协调整个新陈代谢。植物中的糖酵解是一个特殊的网络,其中特定步骤,如3-磷酸甘油醛(Ga3P)的氧化,对其功能发挥至关重要。磷酸丙糖可以通过磷酸化的Ga3P脱氢酶(Ga3PDHase,EC 1.2.1.12)转化为3-磷酸甘油酸,产生ATP和NADH,或者通过非磷酸化酶(np-Ga3PDHase;EC 1.2.1.9)生成NADPH。在这项工作中,我们发现氧化还原调节是一种翻译后机制,可对磷酸丙糖的命运进行微调。两种酶在被活性氧和氮物种氧化后均失活。动力学研究确定,Ga3PDHase对氧化剂的敏感性比np-Ga3PDHase高63倍。硫氧还蛋白-h可逆转两种酶的氧化(尽管它们之间存在差异),表明存在生理氧化还原调节。结果支持了一种代谢情景,即胞质磷酸丙糖脱氢酶在可变的氧化还原条件下受到调节。这将允许通过糖酵解协调产生NADPH或ATP,氧化信号触发胞质中还原力的合成。NADPH的增加将有利于抗氧化反应以应对氧化状况,而硫氧还蛋白系统将通过将np-Ga3PDHase维持在还原的活性状态来对NADPH的产生产生正反馈。