Suppr超能文献

评估 NORDIC 在不同 fMRI 采集策略中的灵敏度提高。

Evaluating increases in sensitivity from NORDIC for diverse fMRI acquisition strategies.

机构信息

Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, 2021 6th Street SE, MN 55455, United States; Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States.

Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, 2021 6th Street SE, MN 55455, United States.

出版信息

Neuroimage. 2023 Apr 15;270:119949. doi: 10.1016/j.neuroimage.2023.119949. Epub 2023 Feb 17.

Abstract

As the neuroimaging field moves towards detecting smaller effects at higher spatial resolutions, and faster sampling rates, there is increased attention given to the deleterious contribution of unstructured, thermal noise. Here, we critically evaluate the performance of a recently developed reconstruction method, termed NORDIC, for suppressing thermal noise using datasets acquired with various field strengths, voxel sizes, sampling rates, and task designs. Following minimal preprocessing, statistical activation (t-values) of NORDIC processed data was compared to the results obtained with alternative denoising methods. Additionally, we examined the consistency of the estimates of task responses at the single-voxel, single run level, using a finite impulse response (FIR) model. To examine the potential impact on effective image resolution, the overall smoothness of the data processed with different methods was estimated. Finally, to determine if NORDIC alters or removes temporal information important for modeling responses, we employed an exhaustive leave-p-out cross validation approach, using FIR task responses to predict held out timeseries, quantified using R. After NORDIC, the t-values are increased, an improvement comparable to what could be achieved by 1.5 voxels smoothing, and task events are clearly visible and have less cross-run error. These advantages are achieved with smoothness estimates increasing by less than 4%, while 1.5 voxel smoothing is associated with increases of over 140%. Cross-validated Rs based on the FIR models show that NORDIC is not measurably distorting the temporal structure of the data under this approach and is the best predictor of non-denoised time courses. The results demonstrate that analyzing 1 run of data after NORDIC produces results equivalent to using 2 to 3 original runs and that NORDIC performs equally well across a diverse array of functional imaging protocols. Significance Statement: For functional neuroimaging, the increasing availability of higher field strengths and ever higher spatiotemporal resolutions has led to concomitant increase in concerns about the deleterious effects of thermal noise. Historically this noise source was suppressed using methods that reduce spatial precision such as image blurring or averaging over a large number of trials or sessions, which necessitates large data collection efforts. Here, we critically evaluate the performance of a recently developed reconstruction method, termed NORDIC, which suppresses thermal noise. Across datasets varying in field strength, voxel sizes, sampling rates, and task designs, NORDIC produces substantial gains in data quality. Both conventional t-statistics derived from general linear models and coefficients of determination for predicting unseen data are improved. These gains match or even exceed those associated with 1 voxel Full Width Half Max image smoothing, however, even such small amounts of smoothing are associated with a 52% reduction in estimates of spatial precision, whereas the measurable difference in spatial precision is less than 4% following NORDIC.

摘要

随着神经影像学领域朝着更高空间分辨率和更快采样率检测更小的效应发展,人们越来越关注非结构化、热噪声的有害贡献。在这里,我们使用不同场强、体素大小、采样率和任务设计获取的数据,对最近开发的重建方法 NORDIC 抑制热噪声的性能进行了严格评估。在进行最小预处理后,比较了 NORDIC 处理后数据的统计激活(t 值)与其他去噪方法的结果。此外,我们还使用有限脉冲响应 (FIR) 模型检查了单像素、单运行水平上任务响应估计的一致性。为了检查对有效图像分辨率的潜在影响,使用不同方法处理的数据的整体平滑度进行了估计。最后,为了确定 NORDIC 是否改变或删除了对建模响应很重要的时间信息,我们采用了详尽的留一交叉验证方法,使用 FIR 任务响应来预测保留的时间序列,并使用 R 进行量化。在 NORDIC 之后,t 值增加,这一改进可与 1.5 体素平滑相当,并且任务事件清晰可见,跨运行误差更小。这些优势是通过平滑度估计增加小于 4%实现的,而 1.5 体素平滑会导致增加超过 140%。基于 FIR 模型的交叉验证 Rs 表明,在这种方法下,NORDIC 并没有对数据的时间结构产生可测量的扭曲,并且是未去噪时间序列的最佳预测器。结果表明,在 NORDIC 后分析 1 次运行的数据产生的结果相当于使用 2 到 3 次原始运行,并且 NORDIC 在各种功能成像协议中表现相同。意义声明:对于功能神经影像学,更高场强和更高时空分辨率的可用性不断增加,导致人们对热噪声的有害影响越来越关注。历史上,这种噪声源是通过降低空间精度的方法来抑制的,例如图像模糊或在大量试验或会话上平均,这需要大量的数据收集工作。在这里,我们对最近开发的重建方法 NORDIC 的性能进行了严格评估,该方法可以抑制热噪声。在不同场强、体素大小、采样率和任务设计的数据集上,NORDIC 都能显著提高数据质量。从一般线性模型得出的传统 t 统计量和预测未见数据的确定系数都得到了改善。这些增益与 1 体素全宽半最大值图像平滑相关联,甚至超过了这些增益,然而,即使如此小的平滑量也会导致空间精度估计减少 52%,而在 NORDIC 之后,空间精度的可测量差异小于 4%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87f4/10234612/8abf7e06c227/nihms-1883359-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验