Suppr超能文献

静息态 EEG 中波动连接的动态因果建模。

Dynamic causal modelling of fluctuating connectivity in resting-state EEG.

机构信息

Ghent University, Ghent, Belgium.

Ghent University, Ghent, Belgium.

出版信息

Neuroimage. 2019 Apr 1;189:476-484. doi: 10.1016/j.neuroimage.2019.01.055. Epub 2019 Jan 26.

Abstract

Functional and effective connectivity are known to change systematically over time. These changes might be explained by several factors, including intrinsic fluctuations in activity-dependent neuronal coupling and contextual factors, like experimental condition and time. Furthermore, contextual effects may be subject-specific or conserved over subjects. To characterize fluctuations in effective connectivity, we used dynamic causal modelling (DCM) of cross spectral responses over 1- min of electroencephalogram (EEG) recordings during rest, divided into 1-sec windows. We focused on two intrinsic networks: the default mode and the saliency network. DCM was applied to estimate connectivity in each time-window for both networks. Fluctuations in DCM connectivity parameters were assessed using hierarchical parametric empirical Bayes (PEB). Within-subject, between-window effects were modelled with a second-level linear model with temporal basis functions as regressors. This procedure was conducted for every subject separately. Bayesian model reduction was then used to assess which (combination of) temporal basis functions best explain dynamic connectivity over windows. A third (between-subject) level model was used to infer which dynamic connectivity parameters are conserved over subjects. Our results indicate that connectivity fluctuations in the default mode network and to a lesser extent the saliency network comprised both subject-specific components and a common component. For both networks, connections to higher order regions appear to monotonically increase during the 1- min period. These results not only establish the predictive validity of dynamic connectivity estimates - in virtue of detecting systematic changes over subjects - they also suggest a network-specific dissociation in the relative contribution of fluctuations in connectivity that depend upon experimental context. We envisage these procedures could be useful for characterizing brain state transitions that may be explained by their cognitive or neuropathological underpinnings.

摘要

功能连接和有效连接已知会随着时间的推移而系统地发生变化。这些变化可能有几个因素来解释,包括活动依赖性神经元耦合的内在波动和上下文因素,如实验条件和时间。此外,上下文效应可能是特定于个体的,或者在个体之间是保守的。为了描述有效连接的波动,我们使用了动态因果建模(DCM)对脑电图(EEG)记录在 1 分钟休息期间的跨频谱响应进行分析,将其分为 1 秒的窗口。我们专注于两个内在网络:默认模式网络和突显网络。DCM 用于估计这两个网络在每个时间窗口的连接。使用分层参数经验贝叶斯(PEB)评估 DCM 连接参数的波动。使用二阶线性模型,将作为回归量的时间基础函数建模为每个窗口内的个体间、窗口间效应。该过程是为每个单独的个体进行的。然后使用贝叶斯模型减少来评估哪些(组合)时间基础函数可以最好地解释窗口之间的动态连接。使用第三级(个体间)模型来推断哪些动态连接参数在个体之间是保守的。我们的结果表明,默认模式网络和突显网络的连接波动包括特定于个体的成分和共同成分。对于这两个网络,与高级区域的连接似乎在 1 分钟期间单调增加。这些结果不仅确立了动态连接估计的预测有效性——由于在个体之间检测到系统变化——它们还表明,连接波动的相对贡献存在网络特异性分离,这取决于实验背景。我们设想这些过程可能有助于描述可能由其认知或神经病理学基础解释的大脑状态转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1699/6435216/d5956dd5925a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验