ACS Appl Mater Interfaces. 2019 Feb 20;11(7):7055-7065. doi: 10.1021/acsami.8b20924. Epub 2019 Feb 11.
The carrier transport layers (CTLs) have exhibited the influence on performance and stability of halide perovskite solar cells (HaPSCs). The exploration of characteristic impacts on HaPSCs induced by the CTL unveils the key factors underlying the device physics. In this work, we investigate the impacts of the organic or inorganic hole transport layer (HTL) in HaPSCs by analyzing the elemental distribution, the current-voltage characteristics, and the capacitance spectroscopy. The organic HTL device shows the lower activation energy ( E < E) indicating a dominant interface-mediated recombination. The defect analysis reveals that the device with the inorganic HTL induces rather deep antisite defects with slightly higher trap densities. This is attributed to the diffusion of metal cations into the halide perovskite (HaP) during crystallization of HaP layer grown on the inorganic HTLs. Our results suggest that the passivation of deep defect and suppression of trap densities in the HaP either using ideal CTLs or optimizing the fabrication route is crucial to improving the device parameters approaching the theoretical limit.
载流子输运层(CTL)对卤化物钙钛矿太阳能电池(HaPSCs)的性能和稳定性有影响。CTL 对 HaPSCs 产生的特征影响的探索揭示了器件物理的关键因素。在这项工作中,我们通过分析元素分布、电流-电压特性和电容谱来研究有机或无机空穴传输层(HTL)在 HaPSCs 中的影响。有机 HTL 器件表现出较低的激活能(E<E),表明界面介导的复合占主导地位。缺陷分析表明,具有无机 HTL 的器件会产生更深的反位缺陷,陷阱密度略高。这归因于在无机 HTLs 上生长的 HaP 层结晶过程中金属阳离子向卤化物钙钛矿(HaP)的扩散。我们的结果表明,使用理想的 CTL 或优化制备路线来钝化 HaP 中的深缺陷并抑制陷阱密度,对于提高器件参数接近理论极限至关重要。