Suppr超能文献

机器学习在建模高中运动性脑震荡症状缓解中的应用。

Machine Learning in Modeling High School Sport Concussion Symptom Resolve.

机构信息

SIVOTEC Analytics, Boca Raton, FL.

Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL.

出版信息

Med Sci Sports Exerc. 2019 Jul;51(7):1362-1371. doi: 10.1249/MSS.0000000000001903.

Abstract

INTRODUCTION

Concussion prevalence in sport is well recognized, so too is the challenge of clinical and return-to-play management for an injury with an inherent indeterminant time course of resolve. A clear, valid insight into the anticipated resolution time could assist in planning treatment intervention.

PURPOSE

This study implemented a supervised machine learning-based approach in modeling estimated symptom resolve time in high school athletes who incurred a concussion during sport activity.

METHODS

We examined the efficacy of 10 classification algorithms using machine learning for the prediction of symptom resolution time (within 7, 14, or 28 d), with a data set representing 3 yr of concussions suffered by high school student-athletes in football (most concussion incidents) and other contact sports.

RESULTS

The most prevalent sport-related concussion reported symptom was headache (94.9%), followed by dizziness (74.3%) and difficulty concentrating (61.1%). For all three category thresholds of predicted symptom resolution time, single-factor ANOVA revealed statistically significant performance differences across the 10 classification models for all learners at a 95% confidence interval (P = 0.000). Naïve Bayes and Random Forest with either 100 or 500 trees were the top-performing learners with an area under the receiver operating characteristic curve performance ranging between 0.656 and 0.742 (0.0-1.0 scale).

CONCLUSIONS

Considering the limitations of these data specific to symptom presentation and resolve, supervised machine learning demonstrated efficacy, while warranting further exploration, in developing symptom-based prediction models for practical estimation of sport-related concussion recovery in enhancing clinical decision support.

摘要

简介

运动中脑震荡的患病率众所周知,对于这种具有固有不确定解决时间过程的损伤,临床和重返赛场管理也具有挑战性。对预期解决时间的清晰、有效的洞察可以帮助规划治疗干预。

目的

本研究在对在运动中遭受脑震荡的高中生运动员进行建模时,采用基于监督机器学习的方法来预测症状缓解时间(在 7、14 或 28 天内)。

方法

我们使用机器学习检验了 10 种分类算法在预测症状缓解时间(7、14 或 28 天内)的功效,该数据集代表了橄榄球(最常见的脑震荡事件)和其他接触性运动中 3 年高中生运动员遭受的脑震荡。

结果

报告的最常见与运动相关的脑震荡症状是头痛(94.9%),其次是头晕(74.3%)和注意力不集中(61.1%)。对于所有三个预测症状缓解时间的类别阈值,单因素方差分析显示,在 95%置信区间内,所有学习者的 10 种分类模型的性能差异均具有统计学意义(P=0.000)。朴素贝叶斯和随机森林,无论使用 100 还是 500 棵树,都是表现最好的学习者,其接受者操作特征曲线下的面积在 0.656 到 0.742 之间(0.0 到 1.0 范围)。

结论

考虑到这些数据在症状表现和缓解方面的局限性,监督机器学习在开发基于症状的预测模型方面具有有效性,同时需要进一步探索,以提高临床决策支持,从而更实际地估计与运动相关的脑震荡恢复情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验