Suppr超能文献

女性运动员的运动性脑震荡评估:神经信息学的作用?

Assessment of Sports Concussion in Female Athletes: A Role for Neuroinformatics?

机构信息

Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA.

出版信息

Neuroinformatics. 2024 Oct;22(4):607-618. doi: 10.1007/s12021-024-09680-8. Epub 2024 Jul 30.

Abstract

Over the past decade, the intricacies of sports-related concussions among female athletes have become readily apparent. Traditional clinical methods for diagnosing concussions suffer limitations when applied to female athletes, often failing to capture subtle changes in brain structure and function. Advanced neuroinformatics techniques and machine learning models have become invaluable assets in this endeavor. While these technologies have been extensively employed in understanding concussion in male athletes, there remains a significant gap in our comprehension of their effectiveness for female athletes. With its remarkable data analysis capacity, machine learning offers a promising avenue to bridge this deficit. By harnessing the power of machine learning, researchers can link observed phenotypic neuroimaging data to sex-specific biological mechanisms, unraveling the mysteries of concussions in female athletes. Furthermore, embedding methods within machine learning enable examining brain architecture and its alterations beyond the conventional anatomical reference frame. In turn, allows researchers to gain deeper insights into the dynamics of concussions, treatment responses, and recovery processes. This paper endeavors to address the crucial issue of sex differences in multimodal neuroimaging experimental design and machine learning approaches within female athlete populations, ultimately ensuring that they receive the tailored care they require when facing the challenges of concussions. Through better data integration, feature identification, knowledge representation, validation, etc., neuroinformaticists, are ideally suited to bring clarity, context, and explainabilty to the study of sports-related head injuries in males and in females, and helping to define recovery.

摘要

在过去的十年中,女性运动员与运动相关的脑震荡的复杂性变得显而易见。传统的临床方法在诊断女性运动员的脑震荡时存在局限性,往往无法捕捉到大脑结构和功能的细微变化。先进的神经信息学技术和机器学习模型已成为这项工作中不可或缺的宝贵资产。虽然这些技术已广泛应用于了解男性运动员的脑震荡情况,但对于女性运动员来说,我们对其有效性的理解仍存在很大差距。

机器学习具有出色的数据分析能力,为弥补这一缺陷提供了有希望的途径。通过利用机器学习的力量,研究人员可以将观察到的表型神经影像学数据与特定于性别的生物学机制联系起来,揭示女性运动员脑震荡的奥秘。此外,在机器学习中嵌入方法可以检查大脑结构及其在传统解剖参考框架之外的改变。反过来,使研究人员能够更深入地了解脑震荡的动力学、治疗反应和恢复过程。

本文旨在解决女性运动员群体中多模态神经影像学实验设计和机器学习方法中的性别差异这一关键问题,最终确保她们在面临脑震荡挑战时得到所需的个性化护理。通过更好的数据集成、特征识别、知识表示、验证等,神经信息学家非常适合为男性和女性的与运动相关的头部损伤研究带来清晰度、背景和可解释性,并有助于定义康复。

相似文献

3
A heads up on concussions: are there sex-related differences?关于脑震荡的提醒:是否存在性别差异?
Phys Sportsmed. 2016;44(1):20-8. doi: 10.1080/00913847.2016.1142834. Epub 2016 Feb 3.
5
Defining a multimodal signature of remote sports concussions.定义远程运动性脑震荡的多模态特征。
Eur J Neurosci. 2017 Aug;46(4):1956-1967. doi: 10.1111/ejn.13583. Epub 2017 May 16.

本文引用的文献

2
The neuropathology of intimate partner violence.亲密伴侣暴力的神经病理学。
Acta Neuropathol. 2023 Dec;146(6):803-815. doi: 10.1007/s00401-023-02646-1. Epub 2023 Oct 28.
10
Machine learning in neuroimaging: from research to clinical practice.神经影像学中的机器学习:从研究到临床实践。
Radiologie (Heidelb). 2022 Dec;62(Suppl 1):1-10. doi: 10.1007/s00117-022-01051-1. Epub 2022 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验