Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain.
Department of Information Systems and Computation (DSIC), Universitat Politècnica de València, Valencia, Spain.
mBio. 2019 Jan 29;10(1):e02460-18. doi: 10.1128/mBio.02460-18.
Membrane computing is a bio-inspired computing paradigm whose devices are the so-called membrane systems or P systems. The P system designed in this work reproduces complex biological landscapes in the computer world. It uses nested "membrane-surrounded entities" able to divide, propagate, and die; to be transferred into other membranes; to exchange informative material according to flexible rules; and to mutate and be selected by external agents. This allows the exploration of hierarchical interactive dynamics resulting from the probabilistic interaction of genes (phenotypes), clones, species, hosts, environments, and antibiotic challenges. Our model facilitates analysis of several aspects of the rules that govern the multilevel evolutionary biology of antibiotic resistance. We examined a number of selected landscapes where we predict the effects of different rates of patient flow from hospital to the community and vice versa, the cross-transmission rates between patients with bacterial propagules of different sizes, the proportion of patients treated with antibiotics, and the antibiotics and dosing found in the opening spaces in the microbiota where resistant phenotypes multiply. We also evaluated the selective strengths of some drugs and the influence of the time 0 resistance composition of the species and bacterial clones in the evolution of resistance phenotypes. In summary, we provide case studies analyzing the hierarchical dynamics of antibiotic resistance using a novel computing model with reciprocity within and between levels of biological organization, a type of approach that may be expanded in the multilevel analysis of complex microbial landscapes. The work that we present here represents the culmination of many years of investigation in looking for a suitable methodology to simulate the multihierarchical processes involved in antibiotic resistance. Everything started with our early appreciation of the different independent but embedded biological units that shape the biology, ecology, and evolution of antibiotic-resistant microorganisms. Genes, plasmids carrying these genes, cells hosting plasmids, populations of cells, microbial communities, and host's populations constitute a complex system where changes in one component might influence the other ones. How would it be possible to simulate such a complexity of antibiotic resistance as it occurs in the real world? Can the process be predicted, at least at the local level? A few years ago, and because of their structural resemblance to biological systems, we realized that membrane computing procedures could provide a suitable frame to approach these questions. Our manuscript describes the first application of this modeling methodology to the field of antibiotic resistance and offers a bunch of examples-just a limited number of them in comparison with the possible ones to illustrate its unprecedented explanatory power.
膜计算是一种受生物启发的计算范例,其设备是所谓的膜系统或 P 系统。本工作中设计的 P 系统在计算机世界中再现了复杂的生物景观。它使用嵌套的“膜包围实体”,能够分裂、传播和死亡;转移到其他膜中;根据灵活的规则交换信息物质;并通过外部代理进行突变和选择。这允许探索由于基因(表型)、克隆、物种、宿主、环境和抗生素挑战的概率相互作用而产生的分层交互动力学。我们的模型促进了对控制抗生素耐药性多层次进化生物学的规则的几个方面的分析。我们研究了一些选定的景观,在这些景观中,我们预测了来自医院到社区和反之的患者流量的不同速率、不同大小的细菌繁殖体的患者之间的交叉传播率、接受抗生素治疗的患者的比例以及在微生物群中开放空间中发现的抗生素和剂量,其中耐药表型会繁殖。我们还评估了一些药物的选择强度以及物种和细菌克隆的耐药性组成对耐药表型进化的影响。总之,我们提供了使用具有生物组织内部和之间的互惠性的新型计算模型分析抗生素耐药性的层次动力学的案例研究,这是一种可以在复杂微生物景观的多层次分析中扩展的方法。我们在这里介绍的工作代表了多年来寻找合适的方法来模拟抗生素耐药性所涉及的多层次过程的研究成果。这一切都始于我们对塑造抗生素耐药性的生物学、生态学和进化的不同独立但嵌入的生物单位的早期认识。基因、携带这些基因的质粒、携带质粒的细胞、细胞群体、微生物群落和宿主群体构成了一个复杂的系统,其中一个组件的变化可能会影响其他组件。如何模拟现实世界中发生的抗生素耐药性的这种复杂性?至少在局部水平上,这个过程是否可以预测?几年前,由于它们与生物系统的结构相似性,我们意识到膜计算程序可以为解决这些问题提供一个合适的框架。我们的手稿描述了这种建模方法在抗生素耐药性领域的首次应用,并提供了一堆示例-与可能的示例相比,只是有限的数量,以说明其前所未有的解释力。