Suppr超能文献

中枢皮质突触中突触结合蛋白钙传感器及其与突触前钙通道的空间偶联

Synaptotagmin Ca Sensors and Their Spatial Coupling to Presynaptic Ca Channels in Central Cortical Synapses.

作者信息

Bornschein Grit, Schmidt Hartmut

机构信息

Carl-Ludwig Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany.

出版信息

Front Mol Neurosci. 2019 Jan 15;11:494. doi: 10.3389/fnmol.2018.00494. eCollection 2018.

Abstract

Ca concentrations drop rapidly over a distance of a few tens of nanometers from an open voltage-gated Ca channel (Ca), thereby, generating a spatially steep and temporally short-lived Ca gradient that triggers exocytosis of a neurotransmitter filled synaptic vesicle. These non-steady state conditions make the Ca-binding kinetics of the Ca sensors for release and their spatial coupling to the Cas important parameters of synaptic efficacy. In the mammalian central nervous system, the main release sensors linking action potential mediated Ca influx to synchronous release are Synaptotagmin (Syt) 1 and 2. We review here quantitative work focusing on the Ca kinetics of Syt2-mediated release. At present similar quantitative detail is lacking for Syt1-mediated release. In addition to triggering release, Ca remaining bound to Syt after the first of two successive high-frequency activations was found to be capable of facilitating release during the second activation. More recently, the Ca sensor Syt7 was identified as additional facilitation sensor. We further review how several recent functional studies provided quantitative insights into the spatial topographical relationships between Syts and Cas and identified mechanisms regulating the sensor-to-channel coupling distances at presynaptic active zones. Most synapses analyzed in matured cortical structures were found to operate at tight, nanodomain coupling. For fast signaling synapses a developmental switch from loose, microdomain to tight, nanodomain coupling was found. The protein Septin5 has been known for some time as a developmentally down-regulated "inhibitor" of tight coupling, while Munc13-3 was found only recently to function as a developmentally up-regulated mediator of tight coupling. On the other hand, a highly plastic synapse was found to operate at loose coupling in the matured hippocampus. Together these findings suggest that the coupling topography and its regulation is a specificity of the type of synapse. However, to definitely draw such conclusion our knowledge of functional active zone topographies of different types of synapses in different areas of the mammalian brain is too incomplete.

摘要

在距离开放的电压门控钙通道(Ca)几十纳米的范围内,钙浓度会迅速下降,从而产生一个空间上陡峭且时间上短暂的钙梯度,该梯度触发充满神经递质的突触小泡的胞吐作用。这些非稳态条件使得用于释放的钙传感器的钙结合动力学及其与钙通道的空间偶联成为突触效能的重要参数。在哺乳动物中枢神经系统中,将动作电位介导的钙内流与同步释放联系起来的主要释放传感器是突触结合蛋白(Syt)1和2。我们在此回顾聚焦于Syt2介导释放的钙动力学的定量研究工作。目前,Syt1介导释放缺乏类似的定量细节。除了触发释放外,在连续两次高频激活中的第一次激活后,发现仍与Syt结合的钙能够在第二次激活期间促进释放。最近,钙传感器Syt7被确定为另一种促进传感器。我们还将进一步回顾最近的几项功能研究如何对Syt和钙通道之间的空间拓扑关系提供了定量见解,并确定了调节突触前活跃区传感器与通道偶联距离的机制。在成熟的皮质结构中分析的大多数突触被发现以紧密的纳米域偶联方式运作。对于快速信号突触,发现存在从松散的微域偶联到紧密的纳米域偶联的发育转变。蛋白质Septin5长期以来被认为是紧密偶联的发育下调的“抑制剂”,而Munc13 - 3直到最近才被发现是紧密偶联的发育上调的介导因子。另一方面,在成熟的海马体中发现一个高度可塑性的突触以松散偶联方式运作。这些发现共同表明偶联拓扑及其调节是突触类型的一种特异性。然而,要明确得出这样的结论,我们对哺乳动物大脑不同区域不同类型突触的功能性活跃区拓扑的了解还不够完整。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3958/6341215/35780bb83f30/fnmol-11-00494-g0001.jpg

相似文献

1
Synaptotagmin Ca Sensors and Their Spatial Coupling to Presynaptic Ca Channels in Central Cortical Synapses.
Front Mol Neurosci. 2019 Jan 15;11:494. doi: 10.3389/fnmol.2018.00494. eCollection 2018.
2
Synaptotagmin2 (Syt2) Drives Fast Release Redundantly with Syt1 at the Output Synapses of Parvalbumin-Expressing Inhibitory Neurons.
J Neurosci. 2017 Apr 26;37(17):4604-4617. doi: 10.1523/JNEUROSCI.3736-16.2017. Epub 2017 Mar 31.
4
Loose coupling between Ca2+ channels and release sensors at a plastic hippocampal synapse.
Science. 2014 Feb 7;343(6171):665-70. doi: 10.1126/science.1244811.
5
Characterization of the role of the Synaptotagmin family as calcium sensors in facilitation and asynchronous neurotransmitter release.
Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):14122-7. doi: 10.1073/pnas.0706711104. Epub 2007 Aug 20.
6
Variations in Ca Influx Can Alter Chelator-Based Estimates of Ca Channel-Synaptic Vesicle Coupling Distance.
J Neurosci. 2018 Apr 18;38(16):3971-3987. doi: 10.1523/JNEUROSCI.2061-17.2018. Epub 2018 Mar 21.
10
Synaptotagmin 7 Mediates Both Facilitation and Asynchronous Release at Granule Cell Synapses.
J Neurosci. 2018 Mar 28;38(13):3240-3251. doi: 10.1523/JNEUROSCI.3207-17.2018.

引用本文的文献

1
Synaptic Vesicle Recycling at the Developing Presynapse.
J Neurochem. 2025 Aug;169(8):e70206. doi: 10.1111/jnc.70206.
2
Machine learning identification of molecular targets for medulloblastoma subgroups using microarray gene fingerprint analysis.
Comput Struct Biotechnol J. 2025 Jul 24;27:3481-3491. doi: 10.1016/j.csbj.2025.07.033. eCollection 2025.
3
Estimates of quantal synaptic parameters in light of more complex vesicle pool models.
Front Cell Neurosci. 2025 Mar 18;19:1556360. doi: 10.3389/fncel.2025.1556360. eCollection 2025.
4
SYT7 promotes breast cancer cells growth through the PI3K/AKT pathway.
Transl Cancer Res. 2024 Jun 30;13(6):2767-2778. doi: 10.21037/tcr-24-7. Epub 2024 Jun 6.
5
Characterization of transcriptional profiles associated with stress-induced neuronal activation in Arc-GFP mice.
Mol Psychiatry. 2024 Oct;29(10):3010-3023. doi: 10.1038/s41380-024-02555-z. Epub 2024 Apr 22.
6
Bound Ca moves faster and farther from single open channels than free Ca.
Front Physiol. 2023 Dec 20;14:1266120. doi: 10.3389/fphys.2023.1266120. eCollection 2023.
7
Otoferlin as a multirole Ca signaling protein: from inner ear synapses to cancer pathways.
Front Cell Neurosci. 2023 Jul 19;17:1197611. doi: 10.3389/fncel.2023.1197611. eCollection 2023.
8
Physiology of intracellular calcium buffering.
Physiol Rev. 2023 Oct 1;103(4):2767-2845. doi: 10.1152/physrev.00042.2022. Epub 2023 Jun 16.
9
L-type Ca channels mediate regulation of glutamate release by subthreshold potential changes.
Proc Natl Acad Sci U S A. 2023 Mar 21;120(12):e2220649120. doi: 10.1073/pnas.2220649120. Epub 2023 Mar 15.
10
The cytological and electrophysiological effects of silver nanoparticles on neuron-like PC12 cells.
PLoS One. 2022 Dec 13;17(12):e0277942. doi: 10.1371/journal.pone.0277942. eCollection 2022.

本文引用的文献

1
Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR.
Nat Methods. 2018 Nov;15(11):936-939. doi: 10.1038/s41592-018-0171-3. Epub 2018 Oct 30.
2
Models of synaptotagmin-1 to trigger Ca -dependent vesicle fusion.
FEBS Lett. 2018 Nov;592(21):3480-3492. doi: 10.1002/1873-3468.13193. Epub 2018 Jul 30.
3
Apparent calcium dependence of vesicle recruitment.
J Physiol. 2018 Oct;596(19):4693-4707. doi: 10.1113/JP275911. Epub 2018 Aug 7.
4
Synergistic control of neurotransmitter release by different members of the synaptotagmin family.
Curr Opin Neurobiol. 2018 Aug;51:154-162. doi: 10.1016/j.conb.2018.05.006. Epub 2018 Jun 7.
5
Molecular Mechanisms of Fast Neurotransmitter Release.
Annu Rev Biophys. 2018 May 20;47:469-497. doi: 10.1146/annurev-biophys-070816-034117.
6
Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses.
Proc Natl Acad Sci U S A. 2018 May 22;115(21):5594-5599. doi: 10.1073/pnas.1720648115. Epub 2018 May 7.
7
Synaptotagmin 7 Mediates Both Facilitation and Asynchronous Release at Granule Cell Synapses.
J Neurosci. 2018 Mar 28;38(13):3240-3251. doi: 10.1523/JNEUROSCI.3207-17.2018.
8
Variations in Ca Influx Can Alter Chelator-Based Estimates of Ca Channel-Synaptic Vesicle Coupling Distance.
J Neurosci. 2018 Apr 18;38(16):3971-3987. doi: 10.1523/JNEUROSCI.2061-17.2018. Epub 2018 Mar 21.
10
Kinetics of Releasable Synaptic Vesicles and Their Plastic Changes at Hippocampal Mossy Fiber Synapses.
Neuron. 2017 Dec 6;96(5):1033-1040.e3. doi: 10.1016/j.neuron.2017.10.016. Epub 2017 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验