Suppr超能文献

耦合金属量子阱实现的大光学非线性效应。

Large optical nonlinearity enabled by coupled metallic quantum wells.

作者信息

Qian Haoliang, Li Shilong, Chen Ching-Fu, Hsu Su-Wen, Bopp Steven Edward, Ma Qian, Tao Andrea R, Liu Zhaowei

机构信息

1Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA.

2Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA.

出版信息

Light Sci Appl. 2019 Jan 23;8:13. doi: 10.1038/s41377-019-0123-4. eCollection 2019.

Abstract

New materials that exhibit strong second-order optical nonlinearities at a desired operational frequency are of paramount importance for nonlinear optics. Giant second-order susceptibility has been obtained in semiconductor quantum wells (QWs). Unfortunately, the limited confining potential in semiconductor QWs causes formidable challenges in scaling such a scheme to the visible/near-infrared (NIR) frequencies for more vital nonlinear-optic applications. Here, we introduce a metal/dielectric heterostructured platform, i.e., TiN/AlO epitaxial multilayers, to overcome that limitation. This platform has an extremely high of approximately 1500 pm/V at NIR frequencies. By combining the aforementioned heterostructure with the large electric field enhancement afforded by a nanostructured metasurface, the power efficiency of second harmonic generation (SHG) achieved 10 at an incident pulse intensity of 10 GW/cm, which is an improvement of several orders of magnitude compared to that of previous demonstrations from nonlinear surfaces at similar frequencies. The proposed quantum-engineered heterostructures enable efficient wave mixing at visible/NIR frequencies into ultracompact nonlinear optical devices.

摘要

在所需工作频率下表现出强二阶光学非线性的新材料对于非线性光学至关重要。在半导体量子阱(QW)中已获得了巨大的二阶极化率。不幸的是,半导体量子阱中有限的限制势给将该方案扩展到可见光/近红外(NIR)频率以用于更重要的非线性光学应用带来了巨大挑战。在此,我们引入一种金属/电介质异质结构平台,即TiN/AlO外延多层膜,以克服该限制。该平台在近红外频率下具有约1500 pm/V的极高值。通过将上述异质结构与纳米结构超表面提供的大电场增强相结合,在10 GW/cm的入射脉冲强度下,二次谐波产生(SHG)的功率效率达到了10,与之前在类似频率下非线性表面的演示相比提高了几个数量级。所提出的量子工程异质结构能够在可见光/近红外频率下实现高效的波混频,从而应用于超紧凑的非线性光学器件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66f8/6344563/5bce6f4b7722/41377_2019_123_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验