Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.
Walter Schottky Institut, Technische Universität München, Am Coulombwall 4, Garching 85748, Germany.
Nature. 2014 Jul 3;511(7507):65-9. doi: 10.1038/nature13455.
Intersubband transitions in n-doped multi-quantum-well semiconductor heterostructures make it possible to engineer one of the largest known nonlinear optical responses in condensed matter systems--but this nonlinear response is limited to light with electric field polarized normal to the semiconductor layers. In a different context, plasmonic metasurfaces (thin conductor-dielectric composite materials) have been proposed as a way of strongly enhancing light-matter interaction and realizing ultrathin planarized devices with exotic wave properties. Here we propose and experimentally realize metasurfaces with a record-high nonlinear response based on the coupling of electromagnetic modes in plasmonic metasurfaces with quantum-engineered electronic intersubband transitions in semiconductor heterostructures. We show that it is possible to engineer almost any element of the nonlinear susceptibility tensor of these structures, and we experimentally verify this concept by realizing a 400-nm-thick metasurface with nonlinear susceptibility of greater than 5 × 10(4) picometres per volt for second harmonic generation at a wavelength of about 8 micrometres under normal incidence. This susceptibility is many orders of magnitude larger than any second-order nonlinear response in optical metasurfaces measured so far. The proposed structures can act as ultrathin highly nonlinear optical elements that enable efficient frequency mixing with relaxed phase-matching conditions, ideal for realizing broadband frequency up- and down-conversions, phase conjugation and all-optical control and tunability over a surface.
在 n 型掺杂多量子阱半导体异质结构中,子带间跃迁使人们有可能设计出凝聚态物质系统中已知的最大非线性光学响应之一——但这种非线性响应仅限于电场沿半导体层法线方向极化的光。在另一个背景下,等离子体超表面(薄导体-电介质复合材料)已被提议作为一种增强光物质相互作用并实现具有奇异波特性的超薄平面化器件的方法。在这里,我们提出并实验实现了基于等离子体超表面中的电磁模式与半导体异质结构中量子工程电子子带间跃迁之间的耦合的具有创纪录高非线性响应的超表面。我们表明,有可能设计出这些结构的非线性介电张量的几乎任何元素,并且我们通过在大约 8 微米的波长下实现厚度为 400 纳米的超表面来实验验证了这一概念,该超表面在正常入射下具有大于 5×10(4) 皮米每伏特的二次谐波产生的非线性介电常数。这种介电常数比迄今为止在光学超表面中测量到的任何二阶非线性响应都大几个数量级。所提出的结构可以作为超薄的高度非线性光学元件,能够在放宽相位匹配条件下有效地进行频率混合,非常适合实现宽带频率上转换和下转换、相位共轭以及在表面上进行全光控制和可调谐性。