Mandracchia Biagio, Wang Zhe, Ferraro Vincenzo, Villone Massimiliano Maria, Di Maio Ernesto, Maffettone Pier Luca, Ferraro Pietro
CNR-ISASI, Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello" del CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli Italy.
2College of Applied Sciences, Beijing University of Technology, 100124 Beijing, China.
Light Sci Appl. 2019 Jan 30;8:20. doi: 10.1038/s41377-019-0131-4. eCollection 2019.
The dynamics and stability of thin liquid films have fascinated scientists over many decades. Thin film flows are central to numerous areas of engineering, geophysics, and biophysics and occur over a wide range of lengths, velocities, and liquid property scales. In spite of many significant developments in this area, we still lack appropriate quantitative experimental tools with the spatial and temporal resolution necessary for a comprehensive study of film evolution. We propose tackling this problem with a holographic technique that combines quantitative phase imaging with a custom setup designed to form and manipulate bubbles. The results, gathered on a model aqueous polymeric solution, provide unparalleled insight into bubble dynamics through the combination of a full-field thickness estimation, three-dimensional imaging, and a fast acquisition time. The unprecedented level of detail offered by the proposed methodology will promote a deeper understanding of the underlying physics of thin film dynamics.
几十年来,薄液膜的动力学和稳定性一直吸引着科学家们。薄膜流动是众多工程、地球物理和生物物理领域的核心,并且在广泛的长度、速度和液体性质尺度上都会出现。尽管该领域取得了许多重大进展,但我们仍然缺乏合适的定量实验工具,这些工具需要具备空间和时间分辨率,以便全面研究薄膜的演变。我们建议用一种全息技术来解决这个问题,该技术将定量相成像与一个定制装置相结合,该装置旨在形成和操控气泡。在一种模型水性聚合物溶液上收集的结果,通过全场厚度估计、三维成像和快速采集时间的结合,提供了对气泡动力学无与伦比的见解。所提出的方法提供的前所未有的详细程度将促进对薄膜动力学潜在物理原理的更深入理解。