School of Mechanical Electronic and Information Engineering, China University of Mining and Technology, Beijing, Beijing 100083, China.
Sensors (Basel). 2019 Jan 30;19(3):594. doi: 10.3390/s19030594.
Vehicle detection with category inference on video sequence data is an important but challenging task for urban traffic surveillance. The difficulty of this task lies in the fact that it requires accurate localization of relatively small vehicles in complex scenes and expects real-time detection. In this paper, we present a vehicle detection framework that improves the performance of the conventional Single Shot MultiBox Detector (SSD), which effectively detects different types of vehicles in real-time. Our approach, which proposes the use of different feature extractors for localization and classification tasks in a single network, and to enhance these two feature extractors through deconvolution (D) and pooling (P) between layers in the feature pyramid, is denoted as DP-SSD. In addition, we extend the scope of the default box by adjusting its scale so that smaller default boxes can be exploited to guide DP-SSD training. Experimental results on the UA-DETRAC and KITTI datasets demonstrate that DP-SSD can achieve efficient vehicle detection for real-world traffic surveillance data in real-time. For the UA-DETRAC test set trained with UA-DETRAC trainval set, DP-SSD with the input size of 300 × 300 achieves 75.43% mAP (mean average precision) at the speed of 50.47 FPS (frames per second), and the framework with a 512 × 512 sized input reaches 77.94% mAP at 25.12 FPS using an NVIDIA GeForce GTX 1080Ti GPU. The DP-SSD shows comparable accuracy, which is better than those of the compared state-of-the-art models, except for YOLOv3.
基于视频序列数据的类别推断的车辆检测对于城市交通监控来说是一项重要但具有挑战性的任务。这项任务的难点在于需要在复杂场景中准确定位相对较小的车辆,并期望实现实时检测。在本文中,我们提出了一种车辆检测框架,该框架改进了传统的单发多框检测器(SSD)的性能,能够实时有效地检测不同类型的车辆。我们的方法提出在单个网络中使用不同的特征提取器进行定位和分类任务,并通过在特征金字塔的层之间进行反卷积(D)和池化(P)来增强这两个特征提取器,我们将其命名为 DP-SSD。此外,我们通过调整默认框的比例来扩展其范围,以便可以利用更小的默认框来指导 DP-SSD 的训练。在 UA-DETRAC 和 KITTI 数据集上的实验结果表明,DP-SSD 可以在实时环境下对真实交通监控数据进行高效的车辆检测。对于使用 UA-DETRAC trainval 集训练的 UA-DETRAC 测试集,DP-SSD 在输入大小为 300×300 时的速度为 50.47 FPS(每秒帧数),mAP(平均精度)达到 75.43%,而在输入大小为 512×512 时的速度为 25.12 FPS,mAP 达到 77.94%,使用 NVIDIA GeForce GTX 1080Ti GPU。DP-SSD 的表现与比较的最先进模型相当,除了 YOLOv3 之外,其准确率都更好。