State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China.
Plant Cell. 2019 Feb;31(2):465-485. doi: 10.1105/tpc.18.00921. Epub 2019 Jan 31.
Cohesin complexes maintain sister chromatid cohesion to ensure proper chromosome segregation during mitosis and meiosis. In plants, the exact components and functions of the cohesin complex remain poorly understood. Here, we positionally cloned the classic maize () mutant (), revealing that it encodes a homolog of SISTER CHROMATID COHESION PROTEIN 4 (SCC4), a loader subunit of the cohesin ring. Developing kernels contained fewer cells than the wild type, but had a highly variable cell size. The mutation was found to disrupt the mitotic cell cycle and endoreduplication, resulting in a reduced endosperm and embryo lethality. The cells in the endosperm and embryo exhibited precocious sister chromatid separation and other chromosome segregation errors, including misaligned chromosomes, lagging chromosomes, and micronuclei, resulting in a high percentage of aneuploid cells. The loss of function upregulated the expression of genes involved in cell cycle progression and stress responses, and downregulated key genes involved in organic synthesis during maize endosperm development. Our yeast two-hybrid screen identified the chromatin remodeling proteins chromatin remodeling factor 4, chromatin remodeling complex subunit B (CHB)102, CHB105, and CHB106 as SCC4-interacting proteins, suggesting a possible mechanism by which the cohesin ring is loaded onto chromatin in plant cells. This study revealed biological functions for DEK15/SCC4 in mitotic chromosome segregation and kernel development in maize.
着丝粒蛋白复合物维持姐妹染色单体的黏合,以确保有丝分裂和减数分裂过程中染色体的正确分离。在植物中,着丝粒蛋白复合物的确切组成和功能仍知之甚少。在这里,我们通过定位克隆的方法获得了经典的玉米突变体 ,揭示其编码姐妹染色单体黏合蛋白 4 (SCC4)的同源物,这是着丝粒环的加载亚基。与野生型相比,发育中的 突变体的胚乳细胞较少,但细胞大小差异较大。该 突变破坏了有丝分裂细胞周期和内复制,导致胚乳和胚胎减少,表现出胚胎致死性。胚乳和胚胎中的细胞表现出过早的姐妹染色单体分离和其他染色体分离错误,包括染色体排列不齐、染色体滞后和微核,导致非整倍体细胞的比例很高。 功能丧失导致参与细胞周期进程和应激反应的基因表达上调,以及参与玉米胚乳发育过程中有机合成的关键基因下调。我们的酵母双杂交筛选鉴定出染色质重塑因子 4、染色质重塑复合物亚基 B(CHB)102、CHB105 和 CHB106 是 SCC4 的相互作用蛋白,这表明了植物细胞中着丝粒环加载到染色质上的可能机制。这项研究揭示了 DEK15/SCC4 在玉米有丝分裂染色体分离和核发育中的生物学功能。