Peter Grünberg Institut, Forschungszentrum Jülich and JARA, 52425, Jülich, Germany.
Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Kraków, Poland.
Nat Commun. 2019 Jan 31;10(1):505. doi: 10.1038/s41467-019-08445-1.
Many properties of real materials can be modeled using ab initio methods within a single-particle picture. However, for an accurate theoretical treatment of excited states, it is necessary to describe electron-electron correlations including interactions with bosons: phonons, plasmons, or magnons. In this work, by comparing spin- and momentum-resolved photoemission spectroscopy measurements to many-body calculations carried out with a newly developed first-principles method, we show that a kink in the electronic band dispersion of a ferromagnetic material can occur at much deeper binding energies than expected (E = 1.5 eV). We demonstrate that the observed spectral signature reflects the formation of a many-body state that includes a photohole bound to a coherent superposition of renormalized spin-flip excitations. The existence of such a many-body state sheds new light on the physics of the electron-magnon interaction which is essential in fields such as spintronics and Fe-based superconductivity.
许多真实材料的性质可以通过单粒子图像中的第一性原理方法进行建模。然而,为了对激发态进行准确的理论处理,有必要描述电子-电子相关性,包括与玻色子的相互作用:声子、等离子体激元和磁子。在这项工作中,通过将自旋和动量分辨光电子能谱测量与用新开发的第一性原理方法进行的多体计算进行比较,我们表明铁磁材料的能带色散中的拐点可能出现在比预期更深的结合能处(E=1.5eV)。我们证明,观察到的光谱特征反映了多体态的形成,其中包括与相干重整化自旋翻转激发的叠加束缚的光空穴。这种多体态的存在为电子-磁子相互作用的物理性质提供了新的认识,这在自旋电子学和铁基超导电性等领域至关重要。