Suppr超能文献

构建用于先进锂电池的纯硅阳极。

Constructing Pure Si Anodes for Advanced Lithium Batteries.

作者信息

Je Minjun, Han Dong-Yeob, Ryu Jaegeon, Park Soojin

机构信息

Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.

Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea.

出版信息

Acc Chem Res. 2023 Aug 15;56(16):2213-2224. doi: 10.1021/acs.accounts.3c00308. Epub 2023 Aug 1.

Abstract

ConspectusWith the escalating demands of portable electronics, electric vehicles, and grid-scale energy storage systems, the development of next-generation rechargeable batteries, which boasts high energy density, cost effectiveness, and environmental sustainability, becomes imperative. Accelerating these advancements could substantially mitigate detrimental carbon emissions. The pursuit of main objectives has kindled interest in pure silicon as a high-capacity electroactive material, capable of further enhancing the gravimetric and volumetric energy densities compared with traditional graphite counterparts. Despite such promising attributes, pure silicon materials face significant hurdles, primarily due to their drastic volumetric changes during the lithiation/delithiation processes. Volume changes give rise to severe side effects, such as fracturing, pulverization, and delamination, triggering rapid capacity decay. Therefore, mitigating silicon particle fracture remains a primary challenge. Importantly, nanoscale silicon (below 150 nm in size) has shown resilience to stresses induced by repeated volume changes, thereby highlighting its potential as an anode-active material. However, the volume expansion stress not only affects the internal structure of the particle but also disrupts the solid-electrolyte interphase (SEI) layer, formed spontaneously on the outer surface of silicon, causing adverse side reactions. Therefore, despite silicon nanoparticles offering new opportunities, overcoming the associated issues is of paramount importance.Thus, this Account aims to spotlight the significant strides made in the development of pure silicon anodes with particular attention to feature size. From the emergence of nanoscale silicon, the following nanotechnology played a crucial role in growing the particle through nano/microstructuring. Similarly, bulk silicon microparticles gradually surfaced with the post-engineering methods owing to their practical advantages. We briefly discuss the special characteristics of representative examples from bulk silicon engineering and nano/microstructuring, all aimed at overcoming intrinsic challenges, such as limiting large volume changes and stabilizing SEI formation during electrochemical cycling. Subsequently, we outline guidelines for advancing pure silicon anodes to incorporate high mass loading and high energy density. Importantly, these advancements require superior material design and the incorporation of exceptional battery components to ensure compatibility and yield synergistic effects. By broadening the cooperative strategies at the cell and system levels, we anticipate that this Account will provide an insightful analysis of pure silicon anodes and catalyze their practical applications in real battery systems.

摘要

概述

随着便携式电子设备、电动汽车和电网规模储能系统需求的不断升级,开发具有高能量密度、成本效益和环境可持续性的下一代可充电电池变得势在必行。加速这些进展可以大幅减少有害碳排放。对主要目标的追求激发了人们对纯硅作为一种高容量电活性材料的兴趣,与传统石墨相比,它能够进一步提高重量和体积能量密度。尽管具有这些诱人的特性,但纯硅材料面临着重大障碍,主要是因为它们在锂化/脱锂过程中会发生剧烈的体积变化。体积变化会引发严重的副作用,如破裂、粉碎和分层,导致容量迅速衰减。因此,减轻硅颗粒的破裂仍然是一个主要挑战。重要的是,纳米级硅(尺寸小于150纳米)已显示出对反复体积变化引起的应力具有弹性,从而突出了其作为阳极活性材料的潜力。然而,体积膨胀应力不仅影响颗粒的内部结构,还会破坏在硅外表面自发形成的固体电解质界面(SEI)层,引发不利的副反应。因此,尽管硅纳米颗粒提供了新的机会,但克服相关问题至关重要。

因此,本综述旨在突出纯硅阳极开发中取得的重大进展,特别关注特征尺寸。从纳米级硅的出现开始,随后的纳米技术通过纳米/微结构化在颗粒生长中发挥了关键作用。同样,块状硅微粒由于其实用优势,通过后处理方法逐渐出现。我们简要讨论了来自块状硅工程和纳米/微结构化的代表性例子的特殊特性,所有这些都旨在克服内在挑战,如限制大体积变化和在电化学循环过程中稳定SEI形成。随后,我们概述了推进纯硅阳极以纳入高质量负载和高能量密度的指导方针。重要的是,这些进展需要卓越的材料设计和特殊电池组件的纳入,以确保兼容性并产生协同效应。通过拓宽电池和系统层面的合作策略,我们预计本综述将对纯硅阳极进行深入分析,并促进其在实际电池系统中的实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd37/10433510/1192a73dc46b/ar3c00308_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验