Department of Metallurgy & Ceramics Science, Graduate School of Science & Engineering, Tokyo Institute of Technology, Tokyo, Japan.
Department of Bioengineering, University of California at Riverside, Riverside, California 92521.
J Biomed Mater Res B Appl Biomater. 2019 Oct;107(7):2238-2253. doi: 10.1002/jbm.b.34316. Epub 2019 Feb 1.
Magnesium (Mg)-based materials have shown great potentials for bioresorbable implant applications. Previous studies showed that Mg with 10 and 20 vol % β-tricalcium phosphate (β-TCP) composites produced by spark plasma sintering, improved mechanical properties when compared with pure Mg. The objectives of this study were to evaluate the degradation behaviors of Mg/10% β-TCP and Mg/20% β-TCP composites in revised stimulated body fluid (rSBF), and to determine their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs) using the direct culture method. During the 11 days of immersion in rSBF, Mg/β-TCP composites showed different degradation behaviors at different immersion periods, that is, the initial stage (0-1 hr), the mid-term stage (1 hr to 2 days), and the long-term stage (2-11 days). The counter effects of mass loss due to microgalvanic corrosion and mass gain due to deposition of Ca-P containing layers resulted in slower Mg ion release for Mg/20% β-TCP than Mg/10% β-TCP in the mid-term, but eventually 16% mass loss for Mg/20% β-TCP and 10% mass loss for Mg/10% β-TCP after 11 days of immersion. The in vitro studies with BMSCs showed the highest cell adhesion density (i.e., 68% of seeding density) on the plate surrounding the Mg/10% β-TCP sample, that is, under the indirect contact condition of direct culture. The β-TCP showed a positive effect on direct adhesion of BMSCs on the surface of Mg/β-TCP composites. This study elucidated the degradation behaviors and the cytocompatibility of Mg/β-TCP composites in vitro; and, further studies on Mg/ceramic composites are needed to determine their potential for clinical applications. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2238-2253, 2019.
镁(Mg)基材料在可生物吸收植入物的应用中显示出巨大的潜力。以前的研究表明,与纯 Mg 相比,通过火花等离子烧结制备的含 10vol%和 20vol%β-磷酸三钙(β-TCP)的 Mg 复合材料具有更好的机械性能。本研究的目的是评估改良的模拟体液(rSBF)中 Mg/10%β-TCP 和 Mg/20%β-TCP 复合材料的降解行为,并通过直接培养法确定它们与骨髓间充质干细胞(BMSCs)的细胞相容性。在 rSBF 中浸泡 11 天期间,Mg/β-TCP 复合材料在不同浸泡期具有不同的降解行为,即在初始阶段(0-1 小时)、中期阶段(1 小时至 2 天)和长期阶段(2-11 天)。微电偶腐蚀导致的质量损失和含 Ca-P 层沉积导致的质量增加的反作用导致 Mg/20%β-TCP 比 Mg/10%β-TCP 在中期的 Mg 离子释放更慢,但最终在 11 天浸泡后,Mg/20%β-TCP 的质量损失为 16%,Mg/10%β-TCP 的质量损失为 10%。与 BMSCs 的体外研究表明,在 Mg/10%β-TCP 样品周围的板上(即在直接培养的间接接触条件下)具有最高的细胞黏附密度(即接种密度的 68%)。β-TCP 对 BMSCs 在 Mg/β-TCP 复合材料表面的直接黏附具有积极作用。本研究阐明了 Mg/β-TCP 复合材料的体外降解行为和细胞相容性,需要进一步研究 Mg/陶瓷复合材料,以确定它们在临床应用中的潜力。© 2019 威利父子公司