Antoniac Iulian, Manescu Paltanea Veronica, Antoniac Aurora, Paltanea Gheorghe
Faculty of Material Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania.
Academy of Romanian Scientists, 050094 Bucharest, Romania.
Regen Biomater. 2023 Nov 1;10:rbad095. doi: 10.1093/rb/rbad095. eCollection 2023.
Magnesium and its alloys are one of the most used materials for bone implants and tissue engineering. They are characterized by numerous advantages such as biodegradability, high biocompatibility and mechanical properties with values close to the human bone. Unfortunately, the implant surface must be adequately tuned, or Mg-based alloys must be alloyed with other chemical elements due to their increased corrosion effect in physiological media. This article reviews the clinical challenges related to bone repair and regeneration, classifying bone defects and presenting some of the most used and modern therapies for bone injuries, such as Ilizarov or Masquelet techniques or stem cell treatments. The implant interface challenges are related to new bone formation and fracture healing, implant degradation and hydrogen release. A detailed analysis of mechanical properties during implant degradation is extensively described based on different literature studies that included and tests correlated with material properties' characterization. Mg-based trauma implants such as plates and screws, intramedullary nails, Herbert screws, spine cages, rings for joint treatment and regenerative scaffolds are presented, taking into consideration their manufacturing technology, the implant geometrical dimensions and shape, the type of or studies and fracture localization. Modern technologies that modify or adapt the Mg-based implant interfaces are described by presenting the main surface microstructural modifications, physical deposition and chemical conversion coatings. The last part of the article provides some recommendations from a translational perspective, identifies the challenges associated with Mg-based implants and presents some future opportunities. This review outlines the available literature on trauma and regenerative bone implants and describes the main techniques used to control the alloy corrosion rate and the cellular environment of the implant.
镁及其合金是骨植入物和组织工程中使用最广泛的材料之一。它们具有许多优点,如生物可降解性、高生物相容性以及与人体骨骼相近的力学性能。不幸的是,由于镁基金属在生理介质中的腐蚀作用增强,植入物表面必须进行适当调整,或者镁基金属必须与其他化学元素合金化。本文综述了与骨修复和再生相关的临床挑战,对骨缺损进行了分类,并介绍了一些最常用和现代的骨损伤治疗方法,如伊里扎洛夫技术或马斯克莱特技术或干细胞治疗。植入物界面的挑战与新骨形成和骨折愈合、植入物降解以及氢气释放有关。基于不同的文献研究,对植入物降解过程中的力学性能进行了详细分析,这些研究包括与材料性能表征相关的拉伸和压缩试验。介绍了镁基金属创伤植入物,如钢板和螺钉、髓内钉、赫伯特螺钉、脊柱融合器、关节治疗用环和再生支架,同时考虑了它们的制造技术、植入物的几何尺寸和形状、拉伸或压缩研究的类型以及骨折部位。通过介绍主要的表面微观结构改性、物理沉积和化学转化涂层,描述了改性或适配镁基金属植入物界面的现代技术。本文最后一部分从转化医学的角度提供了一些建议,确定了与镁基金属植入物相关的挑战,并提出了一些未来的机遇。这篇综述概述了创伤和再生骨植入物的现有文献,并描述了用于控制合金腐蚀速率和植入物细胞环境的主要技术。