Suppr超能文献

镁基复合材料放电等离子烧结研究进展:综述

Insights on Spark Plasma Sintering of Magnesium Composites: A Review.

作者信息

Somasundaram M, Uttamchand Narendra Kumar, Annamalai A Raja, Jen Chun-Ping

机构信息

Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.

Centre for Innovative Manufacturing Research, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.

出版信息

Nanomaterials (Basel). 2022 Jun 24;12(13):2178. doi: 10.3390/nano12132178.

Abstract

This review paper gives an insight into the microstructural, mechanical, biological, and corrosion resistance of spark plasma sintered magnesium (Mg) composites. Mg has a mechanical property similar to natural human bones as well as biodegradable and biocompatible properties. Furthermore, Mg is considered a potential material for structural and biomedical applications. However, its high affinity toward oxygen leads to oxidation of the material. Various researchers optimize the material composition, processing techniques, and surface modifications to overcome this issue. In this review, effort has been made to explore the role of process techniques, especially applying a typical powder metallurgy process and the sintering technique called spark plasma sintering (SPS) in the processing of Mg composites. The effect of reinforcement material on Mg composites is illustrated well. The reinforcement's homogeneity, size, and shape affect the mechanical properties of Mg composites. The evidence shows that Mg composites exhibit better corrosion resistance, as the reinforcement act as a cathode in a Mg matrix. However, in most cases, a localized corrosion phenomenon is observed. The Mg composite's high corrosion rate has adversely affected cell viability and promotes cytotoxicity. The reinforcement of bioactive material to the Mg matrix is a potential method to enhance the corrosion resistance and biocompatibility of the materials. However, the impact of SPS process parameters on the final quality of the Mg composite needs to be explored.

摘要

这篇综述论文深入探讨了放电等离子烧结镁(Mg)复合材料的微观结构、力学性能、生物学性能和耐腐蚀性。镁具有与天然人体骨骼相似的力学性能,以及生物可降解和生物相容性。此外,镁被认为是结构和生物医学应用的潜在材料。然而,其对氧的高亲和力会导致材料氧化。众多研究人员对材料成分、加工工艺和表面改性进行了优化,以克服这一问题。在本综述中,已努力探索工艺技术的作用,特别是在镁复合材料加工中应用典型的粉末冶金工艺和称为放电等离子烧结(SPS)的烧结技术。增强材料对镁复合材料的影响得到了很好的说明。增强材料的均匀性、尺寸和形状会影响镁复合材料的力学性能。证据表明,镁复合材料表现出更好的耐腐蚀性,因为增强材料在镁基体中充当阴极。然而,在大多数情况下,会观察到局部腐蚀现象。镁复合材料的高腐蚀速率对细胞活力产生了不利影响,并促进了细胞毒性。向镁基体中添加生物活性材料是提高材料耐腐蚀性和生物相容性的一种潜在方法。然而,SPS工艺参数对镁复合材料最终质量的影响仍有待探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a652/9268439/d5ca857f3805/nanomaterials-12-02178-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验