Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan.
INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, F-78026, France.
Plant Physiol Biochem. 2019 Mar;136:245-254. doi: 10.1016/j.plaphy.2018.12.011. Epub 2018 Dec 18.
Roots of the higher plants can assimilate inorganic nitrogen by an enzymatic reduction of the most oxidized form (+6) nitrate to the reduced form (-2) glutamate. For such reactions, the substrates (originated from photosynthates) must be imported to supply energy through the reductant-generating systems within the root cells. Intensive studies over last 70 years (reviewed here) revealed the precise mechanisms of nitrate-to-glutamate transformation in roots with elaborate searches of N-tracing, enzymes involved, the reductant-supplying system, and nitrate signaling. In the 1970s, the tracing of N-labeled nitrate and ammonia in the roots demonstrated the sequential reduction and assimilation of nitrate to nitrite, ammonia, glutamine amide, and then glutamate. These reactions involve nitrate reductase (NADH-NR, EC 1.7.1.1) in the cytosol, nitrite reductase (ferredoxin [Fd]-NiR, EC 1.7.7.1), glutamine synthetase (GS2, EC 6.3.1.2), and glutamate synthase (Fd-GOGAT, EC 1.4.7.1) in the plastids. NADH for NR is generated by glycolysis in the cytosol, and NADPH for Fd-NIR and Fd-GOGAT are produced by the oxidative pentose phosphate pathway (OPPP). Electrons from NADPH are conveyed to reduce NIR and Fd-GOGAT through Fd-NADP reductase (FNR, EC 1.6.7.1) specifically in the roots. Physiological and molecular analyses showed the parallel inductions of NR, NIR, GS2, Fd-GOGAT, OPPP enzymes, FNR, and Fd in response to a short-term nitrate supply. Recent studies proposed a molecular mechanism of nitrate-induction of these genes and proteins. Roots can also assimilate the reduced form of inorganic ammonia by the combination of cytosolic GS1 and plastidic NADH-GOGAT.
高等植物的根可以通过酶促还原最氧化形式(+6)硝酸盐为还原形式(-2)谷氨酸来同化无机氮。对于这种反应,底物(来源于光合产物)必须被导入,以通过根细胞内的还原剂生成系统提供能量。过去 70 年的深入研究(这里综述)揭示了根中硝酸盐向谷氨酸转化的精确机制,包括对 N 示踪剂、参与的酶、还原剂供应系统和硝酸盐信号的详细研究。在 20 世纪 70 年代,对根部 N 标记硝酸盐和氨的示踪表明,硝酸盐依次还原和同化到亚硝酸盐、氨、谷氨酰胺酰胺,然后是谷氨酸。这些反应涉及细胞质中的硝酸还原酶(NADH-NR,EC 1.7.1.1)、铁氧还蛋白(Fd)-亚硝酸还原酶(NiR,EC 1.7.7.1)、谷氨酰胺合成酶(GS2,EC 6.3.1.2)和谷氨酸合酶(Fd-GOGAT,EC 1.4.7.1)。NR 的 NADH 由细胞质中的糖酵解产生,Fd-NiR 和 Fd-GOGAT 的 NADPH 由氧化戊糖磷酸途径(OPPP)产生。NADPH 的电子通过 Fd-NADP 还原酶(FNR,EC 1.6.7.1)专门传递到 NIR 和 Fd-GOGAT 中还原它们。生理和分子分析表明,NR、NIR、GS2、Fd-GOGAT、OPPP 酶、FNR 和 Fd 都在短时间的硝酸盐供应下平行诱导。最近的研究提出了硝酸盐诱导这些基因和蛋白质表达的分子机制。根还可以通过细胞质中的 GS1 和质体中的 NADH-GOGAT 结合来同化无机氨的还原形式。