Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA.
Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA.
Curr Opin Chem Biol. 2019 Feb;48:150-157. doi: 10.1016/j.cbpa.2019.01.001. Epub 2019 Jan 31.
Congenital malformations, or structural birth defects, are now the leading cause of infant mortality in the United States and Europe (Dolk et al., 2010; Heron et al., 2009). Of the congenital malformations, congenital heart disease (CHD) is the most common (Dolk et al., 2010; Heron et al., 2009). Thus, a molecular understanding of heart development is an essential goal for improving clinical approaches to CHD. However, CHDs are commonly a result of genetic defects that manifest themselves in a spatial and temporal manner during the early stages of embryogenesis, leaving them mostly intractable to mass spectrometry-based analysis. Here, we describe the technologies and advancements in the field of mass spectrometry over the past few years that have begun to provide insights into the molecular and cellular basis of CHD and prospects for these types of approaches in the future.
先天性畸形,或结构出生缺陷,现在是美国和欧洲婴儿死亡的主要原因(Dolk 等人,2010 年;Heron 等人,2009 年)。在先天性畸形中,先天性心脏病(CHD)是最常见的(Dolk 等人,2010 年;Heron 等人,2009 年)。因此,对心脏发育的分子理解是改善 CHD 临床方法的重要目标。然而,CHD 通常是遗传缺陷的结果,这些缺陷在胚胎发生的早期阶段以空间和时间的方式表现出来,使得它们大多难以用基于质谱的分析方法来解决。在这里,我们描述了过去几年中质谱领域的技术和进展,这些进展开始为 CHD 的分子和细胞基础提供了一些见解,并为未来这些方法的应用提供了一些前景。