Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
J Magn Reson. 2019 Mar;300:84-94. doi: 10.1016/j.jmr.2019.01.007. Epub 2019 Jan 21.
Designing novel diffusion-weighted pulse sequences to probe tissue microstructure beyond the conventional Stejskal-Tanner family is currently of broad interest. One such technique, multidimensional diffusion MRI, has been recently proposed to afford model-free decomposition of diffusion signal kurtosis into terms originating from either ensemble variance of isotropic diffusivity or microscopic diffusion anisotropy. This ability rests on the assumption that diffusion can be described as a sum of multiple Gaussian compartments, but this is often not strictly fulfilled. The effects of nongaussian diffusion on single shot isotropic diffusion sequences were first considered in detail by de Swiet and Mitra in 1996. They showed theoretically that anisotropic compartments lead to anisotropic time dependence of the diffusion tensors, which causes the measured isotropic diffusivity to depend on gradient frame orientation. Here we show how such deviations from the multiple Gaussian compartments assumption conflates orientation dispersion with ensemble variance in isotropic diffusivity. Second, we consider additional contributions to the apparent variance in isotropic diffusivity arising due to intracompartmental kurtosis. These will likewise depend on gradient frame orientation. We illustrate the potential importance of these confounds with analytical expressions, numerical simulations in simple model geometries, and microimaging experiments in fixed spinal cord using isotropic diffusion encoding waveforms with 7.5 ms duration and 3000 mT/m maximum amplitude.
设计新颖的扩散加权脉冲序列来探测传统 Stejskal-Tanner 家族以外的组织微观结构目前引起了广泛的关注。一种这样的技术,多维扩散 MRI,最近被提出,以提供无模型分解扩散信号的峰度到源自各向同性扩散的集合方差或微观扩散各向异性的项。这种能力基于这样的假设,即扩散可以被描述为多个高斯隔室的总和,但这通常不是严格满足的。1996 年,de Swiet 和 Mitra 首次详细考虑了非高斯扩散对单次激发各向同性扩散序列的影响。他们从理论上表明,各向异性隔室导致扩散张量的各向异性时间依赖性,这导致测量的各向同性扩散系数取决于梯度框架方向。在这里,我们展示了这种偏离多个高斯隔室假设如何将方向分散与各向同性扩散中的集合方差混淆。其次,我们考虑由于隔室内的峰度而导致各向同性扩散中的表观方差的额外贡献。这些也将取决于梯度框架方向。我们通过解析表达式、在简单模型几何形状中的数值模拟以及使用持续时间为 7.5ms 和最大幅度为 3000mT/m 的各向同性扩散编码波形在固定脊髓中的微成像实验,说明了这些混淆的潜在重要性。