Hanser Thierry, Steinmetz Fabian P, Plante Jeffrey, Rippmann Friedrich, Krier Mireille
Lhasa Limited, Leeds, UK.
Merck KGaA, Darmstadt, Germany.
J Cheminform. 2019 Feb 2;11(1):9. doi: 10.1186/s13321-019-0334-y.
In this paper, we explore the impact of combining different in silico prediction approaches and data sources on the predictive performance of the resulting system. We use inhibition of the hERG ion channel target as the endpoint for this study as it constitutes a key safety concern in drug development and a potential cause of attrition. We will show that combining data sources can improve the relevance of the training set in regard of the target chemical space, leading to improved performance. Similarly we will demonstrate that combining multiple statistical models together, and with expert systems, can lead to positive synergistic effects when taking into account the confidence in the predictions of the merged systems. The best combinations analyzed display a good hERG predictivity. Finally, this work demonstrates the suitability of the SOHN methodology for building models in the context of receptor based endpoints like hERG inhibition when using the appropriate pharmacophoric descriptors.
在本文中,我们探讨了结合不同的计算机预测方法和数据源对所得系统预测性能的影响。我们将抑制人醚 - 去极化相关基因(hERG)离子通道靶点作为本研究的终点,因为它是药物开发中的关键安全问题以及潜在的淘汰原因。我们将表明,结合数据源可以提高训练集在目标化学空间方面的相关性,从而提高性能。同样,我们将证明,在考虑合并系统预测的置信度时,将多个统计模型与专家系统结合在一起可产生积极的协同效应。所分析的最佳组合显示出良好的hERG预测性。最后,这项工作证明了在使用适当的药效团描述符时,SOHN方法适用于在基于受体的终点(如hERG抑制)的背景下构建模型。