Worsham Emily A, Bermingham Katherine R, Walker Richard J
Department of Geology, University of Maryland, College Park, MD 20742, USA.
Institut für Planetologie, University of Münster, Münster 48149, Germany.
Earth Planet Sci Lett. 2017 Jun 1;467:157-166. doi: 10.1016/j.epsl.2017.02.044. Epub 2017 Apr 11.
The IAB iron meteorite complex consists of a main group (MG) and five chemical subgroups (sLL, sLM, sLH, sHL, and sHH). Here, mass-independent Mo and radiogenic 182W isotope compositions are reported for IAB complex meteorites to evaluate the genetics and chronology, respectively, of the MG and subgroups. Osmium isotopes are used to correct for cosmic ray exposure effects on isotopes of Mo andW. The MG and three subgroups (i.e., sLL, sLM, and sLH), characterized by low Au abundances, have the same Mo isotopic compositions within analytical uncertainty, consistent with a common genetic origin. These meteorites, together with winonaites, are the only cosmochemical materials yet identified with Mo isotopic compositions that are identical to Earth. The Mo isotopic compositions of two subgroups characterized by higher Au abundances (sHL and sHH) are identical to one another within uncertainty, but differ from the low Au subgroups, indicating derivation from genetically distinct materials. The MG has a 182W, post calcium-aluminum inclusion (CAI) formation model age of 3.4 ±0.7Ma. One of the low Au subgroups (sLM) is ~1.7 Ma younger, whereas the high Au subgroups are ~1.5-3 Ma older. The new Mo-W data, coupled with chemical data, indicate that the MG and the low Au subgroups formed in different impact-generated melts, some of which evidently formed on a chemically disparate, but genetically identical parent body. The high Au subgroups likely formed via core-formation processes on separate, internally-heated parent bodies from other IAB subgroups. The IAB complex meteorites fall on a linear trend defined by Mo/Mo vs. Mo/Mo, along with most other iron meteorite groups. Variation along this line was caused by mixing between at least two nebular components. One component was likely a pure -process enriched nucleosynthetic carrier, and the other a homogenized nebular component. Sombrerete, currently classified as an sHL iron, has a Mo isotopic composition that is distinct from all IAB complex meteorites analyzed here. Along with group IVB iron meteorites and some ungrouped iron meteorites, it falls on a separate line from other meteorites which may reflect addition of an -process-enriched component, and it should no longer be classified as a IAB iron.
IAB铁陨石复合体由一个主群(MG)和五个化学子群(sLL、sLM、sLH、sHL和sHH)组成。在此,报告了IAB复合体陨石的质量无关钼和放射性182钨同位素组成,分别用于评估MG和子群的成因及年代学。锇同位素用于校正宇宙射线暴露对钼和钨同位素的影响。MG和三个子群(即sLL、sLM和sLH),其特征为金丰度低,在分析误差范围内具有相同的钼同位素组成,这与共同的成因一致。这些陨石与辉熔长无球粒陨石一起,是目前已鉴定出的钼同位素组成与地球相同的仅有的宇宙化学物质。以较高金丰度为特征的两个子群(sHL和sHH)的钼同位素组成在误差范围内彼此相同,但与低金子群不同,表明它们源自成因不同的物质。MG具有3.4±0.7 Ma的182钨、钙铝包体(CAI)形成后模型年龄。其中一个低金子群(sLM)年轻约1.7 Ma,而高金子群则老约1.5 - 3 Ma。新的钼 - 钨数据与化学数据表明,MG和低金子群形成于不同的撞击产生的熔体中,其中一些显然形成于化学性质不同但成因相同的母体上。高金子群可能是通过在与其他IAB子群不同的、内部加热的母体上的核心形成过程形成的。IAB复合体陨石与大多数其他铁陨石群一起,落在由Mo/Mo对Mo/Mo定义的线性趋势上。沿这条线的变化是由至少两种星云成分之间的混合引起的。一种成分可能是纯过程富集的核合成载体,另一种是均匀化的星云成分。目前归类为sHL铁的索布雷特陨石,其钼同位素组成与本文分析的所有IAB复合体陨石都不同。与IVB群铁陨石和一些未分组的铁陨石一起,它落在与其他陨石不同的一条线上,这可能反映了添加了一个过程富集成分,并且它不应再被归类为IAB铁。