Wang Miao, Nan Hexin, Wang Meixia, Yang Sihui, Liu Lin, Wang Hong-Hui, Nie Zhou
State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China.
College of Biology, Hunan University, Changsha, PR China.
Nat Commun. 2025 Mar 11;16(1):2410. doi: 10.1038/s41467-025-57770-1.
Artificial cells have emerged as synthetic entities designed to mimic the functionalities of natural cells, but their interactive ability with mammalian cells remains challenging. Herein, we develop a generalizable and modular strategy to engineer DNA-empowered stimulable artificial cells designated to regulate mammalian cells (STARM) via synthetic contact-dependent communication. Constructed through temperature-controlled DNA self-assembly involving liquid-liquid phase separation (LLPS), STARMs feature organized all-DNA cytoplasm-mimic and membrane-mimic compartments. These compartments can integrate functional nucleic acid (FNA) modules and light-responsive gold nanorods (AuNRs) to establish a programmable sense-and-respond mechanism to specific stimuli, such as light or ions, orchestrating diverse biological functions, including tissue formation and cellular signaling. By combining two designer STARMs into a dual-channel system, we achieve orthogonally regulated cellular signaling in multicellular communities. Ultimately, the in vivo therapeutic efficacy of STARM in light-guided muscle regeneration in living animals demonstrates the promising potential of smart artificial cells in regenerative medicine.
人工细胞已作为旨在模拟天然细胞功能的合成实体出现,但其与哺乳动物细胞的相互作用能力仍然具有挑战性。在此,我们开发了一种通用且模块化的策略,通过合成接触依赖通信来设计能够调控哺乳动物细胞的DNA赋能可刺激人工细胞(STARM)。通过涉及液-液相分离(LLPS)的温度控制DNA自组装构建而成,STARM具有组织化的全DNA细胞质模拟和膜模拟隔室。这些隔室可以整合功能性核酸(FNA)模块和光响应性金纳米棒(AuNRs),以建立针对特定刺激(如光或离子)的可编程传感和响应机制,从而协调包括组织形成和细胞信号传导在内的多种生物学功能。通过将两种设计的STARM组合成一个双通道系统,我们在多细胞群落中实现了正交调控的细胞信号传导。最终,STARM在活体动物光引导肌肉再生中的体内治疗效果证明了智能人工细胞在再生医学中的广阔前景。