Suppr超能文献

OEDIPUS:用于稀疏约束 MRI 的实验设计框架。

OEDIPUS: An Experiment Design Framework for Sparsity-Constrained MRI.

出版信息

IEEE Trans Med Imaging. 2019 Jul;38(7):1545-1558. doi: 10.1109/TMI.2019.2896180. Epub 2019 Feb 1.

Abstract

This paper introduces a new estimation-theoretic framework for experiment design in the context of MR image reconstruction under sparsity constraints. The new framework is called OEDIPUS (Oracle-based Experiment Design for Imaging Parsimoniously Under Sparsity constraints) and is based on combining the constrained Cramér-Rao bound with classical experiment design techniques. Compared to popular random sampling approaches, OEDIPUS is fully deterministic and automatically tailors the sampling pattern to the specific imaging context of interest (i.e., accounting for coil geometry, anatomy, image contrast, etc.). OEDIPUS-based experiment designs are evaluated using retrospectively subsampled in vivo MRI data in several different contexts. The results demonstrate that OEDIPUS-based experiment designs have some desirable characteristics relative to conventional MRI sampling approaches.

摘要

本文提出了一种新的基于约束最大似然估计的稀疏磁共振图像重建实验设计框架。该框架称为 OEDIPUS(基于约束的稀疏约束下成像的实验设计),它基于将约束克拉美-罗界与经典实验设计技术相结合。与流行的随机采样方法相比,OEDIPUS 是完全确定性的,并自动根据特定的成像背景(即考虑线圈几何形状、解剖结构、图像对比度等)来调整采样模式。使用不同背景下的体内 MRI 数据进行了基于 OEDIPUS 的实验设计的评估。结果表明,与传统的 MRI 采样方法相比,基于 OEDIPUS 的实验设计具有一些理想的特性。

相似文献

1
OEDIPUS: An Experiment Design Framework for Sparsity-Constrained MRI.OEDIPUS:用于稀疏约束 MRI 的实验设计框架。
IEEE Trans Med Imaging. 2019 Jul;38(7):1545-1558. doi: 10.1109/TMI.2019.2896180. Epub 2019 Feb 1.
6
Exploiting the wavelet structure in compressed sensing MRI.利用压缩感知磁共振成像中的小波结构。
Magn Reson Imaging. 2014 Dec;32(10):1377-89. doi: 10.1016/j.mri.2014.07.016. Epub 2014 Aug 19.
9
Dictionary learning and time sparsity in dynamic MRI.动态磁共振成像中的字典学习与时间稀疏性
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):256-63. doi: 10.1007/978-3-642-33415-3_32.

引用本文的文献

4
Cramér-Rao Bound Optimized Subspace Reconstruction in Quantitative MRI.定量磁共振成像中克拉美罗界优化的子空间重建
IEEE Trans Biomed Eng. 2025 Jan;72(1):217-226. doi: 10.1109/TBME.2024.3446763. Epub 2025 Jan 15.
6
Deep learning for accelerated and robust MRI reconstruction.深度学习在加速和稳健 MRI 重建中的应用。
MAGMA. 2024 Jul;37(3):335-368. doi: 10.1007/s10334-024-01173-8. Epub 2024 Jul 23.
7
Artificial intelligence for neuro MRI acquisition: a review.神经磁共振成像采集的人工智能:综述。
MAGMA. 2024 Jul;37(3):383-396. doi: 10.1007/s10334-024-01182-7. Epub 2024 Jun 26.

本文引用的文献

2
PROBING MICROSTRUCTURE WITH - RELAXATION CORRELATION SPECTROSCOPIC IMAGING.用弛豫相关光谱成像探测微观结构
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:675-678. doi: 10.1109/ISBI.2018.8363664. Epub 2018 May 24.
4
Learning-Based Compressive MRI.基于学习的压缩磁共振成像。
IEEE Trans Med Imaging. 2018 Jun;37(6):1394-1406. doi: 10.1109/TMI.2018.2832540.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验