Suppr超能文献

通过流体驱动的异常随机化解析正常解剖结构。

Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization.

作者信息

Liu Peirong, Aguila Ana Lawry, Iglesias Juan E

机构信息

Harvard Medical School and Massachusetts General Hospital.

UCL.

出版信息

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2025 Jun;2025:10455-10465. doi: 10.1109/cvpr52734.2025.00978. Epub 2025 Aug 13.

Abstract

Data-driven machine learning has made significant strides in medical image analysis. However, most existing methods are tailored to specific modalities and assume a particular resolution (often isotropic). This limits their generalizability in clinical settings, where variations in scan appearance arise from differences in sequence parameters, resolution, and orientation. Furthermore, most general-purpose models are designed for healthy subjects and suffer from performance degradation when pathology is present. We introduce UNA (Unraveling Normal Anatomy), the first modality-agnostic learning approach for normal brain anatomy reconstruction that can handle both healthy scans and cases with pathology. We propose a fluid-driven anomaly randomization method that generates an unlimited number of realistic pathology profiles on-the-fly. UNA is trained on a combination of synthetic and real data, and can be applied directly to real images with potential pathology without the need for fine-tuning. We demonstrate UNA's effectiveness in reconstructing healthy brain anatomy and showcase its direct application to anomaly detection, using both simulated and real images from 3D healthy and stroke datasets, including CT and MRI scans. By bridging the gap between healthy and diseased images, UNA enables the use of general-purpose models on diseased images, opening up new opportunities for large-scale analysis of uncurated clinical images in the presence of pathology. Code is available at https://github.com/peirong26/UNA.

摘要

数据驱动的机器学习在医学图像分析方面取得了重大进展。然而,大多数现有方法都是针对特定模态量身定制的,并假设特定的分辨率(通常是各向同性的)。这限制了它们在临床环境中的通用性,因为扫描外观的变化源于序列参数、分辨率和方向的差异。此外,大多数通用模型是为健康受试者设计的,当存在病变时会出现性能下降。我们引入了UNA(解开正常解剖结构),这是第一种用于正常脑解剖结构重建的模态无关学习方法,它可以处理健康扫描和有病变的病例。我们提出了一种流体驱动的异常随机化方法,该方法可以即时生成无限数量的逼真病变轮廓。UNA在合成数据和真实数据的组合上进行训练,并且可以直接应用于具有潜在病变的真实图像,而无需微调。我们展示了UNA在重建健康脑解剖结构方面的有效性,并展示了其在异常检测中的直接应用,使用了来自3D健康和中风数据集的模拟和真实图像,包括CT和MRI扫描。通过弥合健康图像和患病图像之间的差距,UNA使得在患病图像上使用通用模型成为可能,为在存在病变的情况下对未整理的临床图像进行大规模分析开辟了新机会。代码可在https://github.com/peirong26/UNA获取。

相似文献

1
Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization.通过流体驱动的异常随机化解析正常解剖结构。
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2025 Jun;2025:10455-10465. doi: 10.1109/cvpr52734.2025.00978. Epub 2025 Aug 13.
3
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.使用患者特异性截骨导向器的前路全踝关节置换术。
JBJS Essent Surg Tech. 2025 Aug 15;15(3). doi: 10.2106/JBJS.ST.23.00027. eCollection 2025 Jul-Sep.

本文引用的文献

3
Large language models encode clinical knowledge.大语言模型编码临床知识。
Nature. 2023 Aug;620(7972):172-180. doi: 10.1038/s41586-023-06291-2. Epub 2023 Jul 12.
4
Foundation models for generalist medical artificial intelligence.通用型医学人工智能的基础模型。
Nature. 2023 Apr;616(7956):259-265. doi: 10.1038/s41586-023-05881-4. Epub 2023 Apr 12.
9
SynthStrip: skull-stripping for any brain image.SynthStrip:用于任何脑图像的头骨剥离。
Neuroimage. 2022 Oct 15;260:119474. doi: 10.1016/j.neuroimage.2022.119474. Epub 2022 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验