Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America.
Department of Computer Science, University of Illinois at Chicago, Chicago, Illinois, United States of America.
PLoS Comput Biol. 2019 Feb 4;15(2):e1006693. doi: 10.1371/journal.pcbi.1006693. eCollection 2019 Feb.
Food allergy is usually difficult to diagnose in early life, and the inability to diagnose patients with atopic diseases at an early age may lead to severe complications. Numerous studies have suggested an association between the infant gut microbiome and development of allergy. In this work, we investigated the capacity of Long Short-Term Memory (LSTM) networks to predict food allergies in early life (0-3 years) from subjects' longitudinal gut microbiome profiles. Using the DIABIMMUNE dataset, we show an increase in predictive power using our model compared to Hidden Markov Model, Multi-Layer Perceptron Neural Network, Support Vector Machine, Random Forest, and LASSO regression. We further evaluated whether the training of LSTM networks benefits from reduced representations of microbial features. We considered sparse autoencoder for extraction of potential latent representations in addition to standard feature selection procedures based on Minimum Redundancy Maximum Relevance (mRMR) and variance prior to the training of LSTM networks. The comprehensive evaluation reveals that LSTM networks with the mRMR selected features achieve significantly better performance compared to the other tested machine learning models.
食物过敏在婴儿期通常难以诊断,而不能在早期诊断出特应性疾病的患者可能会导致严重的并发症。大量研究表明,婴儿肠道微生物组与过敏的发展之间存在关联。在这项工作中,我们研究了长短期记忆(LSTM)网络从受试者的纵向肠道微生物组谱中预测生命早期(0-3 岁)食物过敏的能力。使用 DIABIMMUNE 数据集,我们展示了与隐马尔可夫模型、多层感知机神经网络、支持向量机、随机森林和 LASSO 回归相比,我们的模型在预测能力上的提高。我们还评估了 LSTM 网络的训练是否受益于微生物特征的降维表示。我们考虑了稀疏自动编码器来提取潜在的潜在表示,除了基于最小冗余最大相关性(mRMR)和方差的标准特征选择程序之外,在训练 LSTM 网络之前。综合评估表明,与其他测试的机器学习模型相比,基于 mRMR 选择特征的 LSTM 网络具有显著更好的性能。