Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222, Terrassa, Spain.
Instituto de Microcirugía Ocular, Josep Mar´ıa Lladó 3, 08035, Barcelona, Spain.
Sci Rep. 2019 Feb 4;9(1):1157. doi: 10.1038/s41598-018-38136-8.
We propose an image processing method for ordering anterior chamber optical coherence tomography (OCT) images in a fully unsupervised manner. The method consists of three steps: Firstly we preprocess the images (filtering the noise, aligning and normalizing the resolution); secondly, a distance measure between images is computed for every pair of images; thirdly we apply a machine learning algorithm that exploits the distance measure to order the images in a two-dimensional plane. The method is applied to a large (~1000) database of anterior chamber OCT images of healthy subjects and patients with angle-closure and the resulting unsupervised ordering and classification is validated by two ophthalmologists.
我们提出了一种完全无监督的方法,用于对眼前房光学相干断层扫描(OCT)图像进行排序。该方法包括三个步骤:首先,我们对图像进行预处理(过滤噪声、对齐和归一化分辨率);其次,计算每对图像之间的距离度量;最后,我们应用机器学习算法,利用距离度量将图像在二维平面上进行排序。该方法应用于一个包含约 1000 例健康受试者和闭角型青光眼患者的眼前房 OCT 图像的大型数据库,两名眼科医生对由此产生的无监督排序和分类进行了验证。