Department of Psychology, Faculty of Behavioral and Social Sciences, University of Amsterdam, Nieuwe Achtergracht 129-B, 1018WS, Amsterdam, The Netherlands.
Department of Psychology, Ludwig-Maximilians-Universität München, München, Germany.
Behav Res Methods. 2019 Jun;51(3):1042-1058. doi: 10.3758/s13428-018-01189-8.
Well-designed experiments are likely to yield compelling evidence with efficient sample sizes. Bayes Factor Design Analysis (BFDA) is a recently developed methodology that allows researchers to balance the informativeness and efficiency of their experiment (Schönbrodt & Wagenmakers, Psychonomic Bulletin & Review, 25(1), 128-142 2018). With BFDA, researchers can control the rate of misleading evidence but, in addition, they can plan for a target strength of evidence. BFDA can be applied to fixed-N and sequential designs. In this tutorial paper, we provide an introduction to BFDA and analyze how the use of informed prior distributions affects the results of the BFDA. We also present a user-friendly web-based BFDA application that allows researchers to conduct BFDAs with ease. Two practical examples highlight how researchers can use a BFDA to plan for informative and efficient research designs.
精心设计的实验很可能会产生具有高效样本量的令人信服的证据。贝叶斯因子设计分析(BFDA)是一种最近开发的方法,允许研究人员平衡实验的信息量和效率(Schönbrodt & Wagenmakers,《心理学期刊与评论》,25(1),128-142,2018)。使用 BFDA,研究人员可以控制误导性证据的比率,但除此之外,他们还可以计划证据的目标强度。BFDA 可应用于固定 N 和序贯设计。在本教程中,我们将介绍 BFDA,并分析使用知情先验分布如何影响 BFDA 的结果。我们还提供了一个用户友好的基于网络的 BFDA 应用程序,允许研究人员轻松进行 BFDA。两个实际示例强调了研究人员如何使用 BFDA 来规划有信息量和高效的研究设计。