Suppr超能文献

皮肤致敏试验——下一步是什么?

Skin Sensitization Testing-What's Next?

机构信息

SenzaGen AB, Medicon Village, S-223 81 Lund, Sweden.

Department of Immunotechnology, Lund University, Medicon Village (bldg 406), S-223 81 Lund, Sweden.

出版信息

Int J Mol Sci. 2019 Feb 4;20(3):666. doi: 10.3390/ijms20030666.

Abstract

There is an increasing demand for alternative in vitro methods to replace animal testing, and, to succeed, new methods are required to be at least as accurate as existing in vivo tests. However, skin sensitization is a complex process requiring coordinated and tightly regulated interactions between a variety of cells and molecules. Consequently, there is considerable difficulty in reproducing this level of biological complexity in vitro, and as a result the development of non-animal methods has posed a major challenge. However, with the use of a relevant biological system, the high information content of whole genome expression, and comprehensive bioinformatics, assays for most complex biological processes can be achieved. We propose that the Genomic Allergen Rapid Detection (GARD™) assay, developed to create a holistic data-driven in vitro model with high informational content, could be such an example. Based on the genomic expression of a mature human dendritic cell line and state-of-the-art machine learning techniques, GARD™ can today accurately predict skin sensitizers and correctly categorize skin sensitizing potency. Consequently, by utilizing advanced processing tools in combination with high information genomic or proteomic data, we can take the next step toward alternative methods with the same predictive accuracy as today's in vivo methods-and beyond.

摘要

人们越来越希望找到替代动物试验的体外方法,而新方法至少要与现有的体内试验同样准确,才能取得成功。但是,皮肤致敏是一个复杂的过程,需要多种细胞和分子之间协调和严格的相互作用。因此,在体外重现这种生物复杂性具有相当大的难度,因此开发非动物方法一直是一个重大挑战。然而,使用相关的生物系统、全基因组表达的高信息含量以及全面的生物信息学,可以实现大多数复杂生物过程的检测。我们提出,开发基因组过敏原快速检测(GARD™)检测方法是为了创建一个具有高信息含量的整体数据驱动的体外模型,这可能就是这样一个例子。基于成熟的人类树突状细胞系的基因组表达和最先进的机器学习技术,GARD™ 今天可以准确预测皮肤致敏原,并正确分类皮肤致敏强度。因此,通过利用先进的处理工具结合高信息量的基因组或蛋白质组数据,我们可以朝着与今天的体内方法一样准确的预测精度的替代方法迈进——甚至超越。

相似文献

1
Skin Sensitization Testing-What's Next?皮肤致敏试验——下一步是什么?
Int J Mol Sci. 2019 Feb 4;20(3):666. doi: 10.3390/ijms20030666.

本文引用的文献

7
Consensus of classification trees for skin sensitisation hazard prediction.用于皮肤致敏危害预测的分类树共识
Toxicol In Vitro. 2016 Oct;36:197-209. doi: 10.1016/j.tiv.2016.07.014. Epub 2016 Jul 22.
9
Machine Learning in Medicine.医学中的机器学习
Circulation. 2015 Nov 17;132(20):1920-30. doi: 10.1161/CIRCULATIONAHA.115.001593.
10
Machine learning applications in genetics and genomics.机器学习在遗传学和基因组学中的应用。
Nat Rev Genet. 2015 Jun;16(6):321-32. doi: 10.1038/nrg3920. Epub 2015 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验