State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China.
School of Materials Science and Engineering , Nanchang University, and Jiangxi Engineering Laboratory for Advanced Functional Thin Films , Nanchang 330031 , China.
ACS Appl Mater Interfaces. 2019 Mar 6;11(9):9548-9556. doi: 10.1021/acsami.8b20406. Epub 2019 Feb 20.
Single-phase (00 l)-oriented BiTe topological insulator thin films have been deposited on (111)-oriented ferroelectric 0.71Pb(MgNb)O-0.29PbTiO (PMN-PT) single-crystal substrates. Taking advantage of the nonvolatile polarization charges induced by the polarization direction switching of PMN-PT substrates at room temperature, the carrier density, Fermi level, magnetoconductance, conductance channel, phase coherence length, and quantum corrections to the conductance can be in situ modulated in a reversible and nonvolatile manner. Specifically, upon the polarization switching from the positively poled P state (i.e., polarization direction points to the film) to the negatively poled P (i.e., polarization direction points to the bottom electrode) state, both the electron carrier density and the Fermi wave vector decrease significantly, reflecting a shift of the Fermi level toward the Dirac point. The polarization switching from P to P also results in significant increase of the conductance channel α from -0.15 to -0.3 and a decrease of the phase coherence length from 200 to 80 nm at T = 2 K as well as a reduction of the electron-electron interaction. All these results demonstrate that electric-voltage control of physical properties using PMN-PT as both substrates and gating materials provides a simple and a straightforward approach to realize reversible and nonvolatile tuning of electronic properties of topological thin films and may be further extended to study carrier density-related quantum transport properties of other quantum matter.
单相 (00l) 取向的 BiTe 拓扑绝缘体薄膜已沉积在 (111) 取向的铁电 0.71Pb(MgNb)O-0.29PbTiO (PMN-PT) 单晶衬底上。利用 PMN-PT 衬底在室温下通过极化方向切换产生的非易失性极化电荷,可以以可逆和非易失的方式原位调制载流子密度、费米能级、磁导率、电导通道、相位相干长度和电导的量子修正。具体来说,在从正电极化的 P 态(即极化方向指向薄膜)到负电极化的 P 态(即极化方向指向底部电极)的极化切换过程中,电子载流子密度和费米波矢都显著降低,反映出费米能级向狄拉克点的移动。从 P 到 P 的极化切换也导致电导通道α从-0.15 显著增加到-0.3,以及在 T=2 K 时相位相干长度从 200nm 减小到 80nm,同时电子-电子相互作用减小。所有这些结果表明,使用 PMN-PT 作为衬底和栅极材料来进行电压控制,可以提供一种简单直接的方法来实现拓扑薄膜电子性能的可逆和非易失性调节,并可能进一步扩展到研究其他量子物质的载流子密度相关的量子输运性质。