Disharoon Dante, Neeves Keith B, Marr David W M
Department of Chemical and Biological Engineering , Colorado School of Mines , Golden , Colorado 80401 , United States.
Langmuir. 2019 Mar 5;35(9):3455-3460. doi: 10.1021/acs.langmuir.8b04084. Epub 2019 Feb 19.
Microscale devices must overcome fluid reversibility to propel themselves in environments where viscous forces dominate. One approach, used by colloidal microwheels (μwheels) consisting of superparamagnetic particles assembled and powered by rotating ac magnetic fields, is to employ a nearby surface to provide friction. Here, we used total internal reflection microscopy to show that individual 8.3 μm particles roll inefficiently with significant slip because of a particle-surface fluid gap of 20-80 nm. We determined that both gap width and slip increase with the increasing particle rotation rate when the load force is provided by gravity alone, thus providing an upper bound on translational velocity. By imposing an additional load force with a dc magnetic field gradient superimposed on the ac field, we were able to decrease the gap width and thereby enhance translation velocities. For example, an additional load force of 0.2 F provided by a dc field gradient increased the translational velocity from 40 to 80 μm/s for a 40 Hz rotation rate. The translation velocity increases with the decreasing gap width whether the gap is varied by dc field gradient-induced load forces or by reducing the Debye length with salt. These results present a strategy to accelerate surface-enabled rolling of microscale particles and open the possibility of high-speed μwheel rolling independent of the gravitational field.
在粘性力占主导的环境中,微尺度装置必须克服流体的可逆性才能自行推进。一种方法是利用附近的表面提供摩擦力,由旋转交流磁场组装并供电的超顺磁性颗粒组成的胶体微轮(μ轮)采用了这种方法。在这里,我们使用全内反射显微镜表明,由于颗粒与表面之间存在20 - 80纳米的流体间隙,单个8.3微米的颗粒滚动效率低下且存在明显的滑动。我们确定,当仅由重力提供负载力时,间隙宽度和滑动都会随着颗粒旋转速率的增加而增加,从而为平移速度提供了一个上限。通过在交流磁场上叠加直流磁场梯度施加额外的负载力,我们能够减小间隙宽度,从而提高平移速度。例如,由直流场梯度提供的0.2F额外负载力,使40Hz旋转速率下的平移速度从40μm/s提高到80μm/s。无论间隙是通过直流场梯度引起的负载力变化,还是通过用盐降低德拜长度来变化,平移速度都会随着间隙宽度的减小而增加。这些结果提出了一种加速微尺度颗粒表面驱动滚动的策略,并开启了独立于重力场的高速μ轮滚动的可能性。