Suppr超能文献

用于增强胶体微轮平移的交流/直流磁场。

ac/dc Magnetic Fields for Enhanced Translation of Colloidal Microwheels.

作者信息

Disharoon Dante, Neeves Keith B, Marr David W M

机构信息

Department of Chemical and Biological Engineering , Colorado School of Mines , Golden , Colorado 80401 , United States.

出版信息

Langmuir. 2019 Mar 5;35(9):3455-3460. doi: 10.1021/acs.langmuir.8b04084. Epub 2019 Feb 19.

Abstract

Microscale devices must overcome fluid reversibility to propel themselves in environments where viscous forces dominate. One approach, used by colloidal microwheels (μwheels) consisting of superparamagnetic particles assembled and powered by rotating ac magnetic fields, is to employ a nearby surface to provide friction. Here, we used total internal reflection microscopy to show that individual 8.3 μm particles roll inefficiently with significant slip because of a particle-surface fluid gap of 20-80 nm. We determined that both gap width and slip increase with the increasing particle rotation rate when the load force is provided by gravity alone, thus providing an upper bound on translational velocity. By imposing an additional load force with a dc magnetic field gradient superimposed on the ac field, we were able to decrease the gap width and thereby enhance translation velocities. For example, an additional load force of 0.2 F provided by a dc field gradient increased the translational velocity from 40 to 80 μm/s for a 40 Hz rotation rate. The translation velocity increases with the decreasing gap width whether the gap is varied by dc field gradient-induced load forces or by reducing the Debye length with salt. These results present a strategy to accelerate surface-enabled rolling of microscale particles and open the possibility of high-speed μwheel rolling independent of the gravitational field.

摘要

在粘性力占主导的环境中,微尺度装置必须克服流体的可逆性才能自行推进。一种方法是利用附近的表面提供摩擦力,由旋转交流磁场组装并供电的超顺磁性颗粒组成的胶体微轮(μ轮)采用了这种方法。在这里,我们使用全内反射显微镜表明,由于颗粒与表面之间存在20 - 80纳米的流体间隙,单个8.3微米的颗粒滚动效率低下且存在明显的滑动。我们确定,当仅由重力提供负载力时,间隙宽度和滑动都会随着颗粒旋转速率的增加而增加,从而为平移速度提供了一个上限。通过在交流磁场上叠加直流磁场梯度施加额外的负载力,我们能够减小间隙宽度,从而提高平移速度。例如,由直流场梯度提供的0.2F额外负载力,使40Hz旋转速率下的平移速度从40μm/s提高到80μm/s。无论间隙是通过直流场梯度引起的负载力变化,还是通过用盐降低德拜长度来变化,平移速度都会随着间隙宽度的减小而增加。这些结果提出了一种加速微尺度颗粒表面驱动滚动的策略,并开启了独立于重力场的高速μ轮滚动的可能性。

相似文献

1
ac/dc Magnetic Fields for Enhanced Translation of Colloidal Microwheels.用于增强胶体微轮平移的交流/直流磁场。
Langmuir. 2019 Mar 5;35(9):3455-3460. doi: 10.1021/acs.langmuir.8b04084. Epub 2019 Feb 19.
7
Interactions between two touching spherical particles in sedimentation.沉降过程中两个接触球形颗粒之间的相互作用。
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 2):046316. doi: 10.1103/PhysRevE.76.046316. Epub 2007 Oct 31.
8
Field-flow fractionation of magnetic particles in a cyclic magnetic field.在循环磁场中磁性颗粒的场流分级。
J Chromatogr A. 2011 Jun 24;1218(25):3908-14. doi: 10.1016/j.chroma.2011.04.065. Epub 2011 May 6.

引用本文的文献

1
Surface Rolling Active Magnetic Emulsions.表面滚动活性磁乳液
Adv Sci (Weinh). 2025 Aug;12(32):e01866. doi: 10.1002/advs.202501866. Epub 2025 Jun 10.
2
Magnetically powered microwheel thrombolysis of occlusive thrombi in zebrafish.磁驱动微滚轮对斑马鱼阻塞性血栓的溶栓作用。
Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2315083121. doi: 10.1073/pnas.2315083121. Epub 2024 Feb 26.

本文引用的文献

1
Catalytic Janus Colloids: Controlling Trajectories of Chemical Microswimmers.催化型雅努斯胶体:控制化学微泳器的轨迹
Acc Chem Res. 2018 Sep 18;51(9):1931-1939. doi: 10.1021/acs.accounts.8b00243. Epub 2018 Aug 2.
2
Artificial Magnetotaxis of Microbot: Magnetophoresis versus Self-Swimming.微机器人的人工磁趋性:磁泳与自主游动。
Langmuir. 2018 Jul 10;34(27):7971-7980. doi: 10.1021/acs.langmuir.8b01210. Epub 2018 Jun 29.
4
Small-Scale Machines Driven by External Power Sources.受外部动力源驱动的小型机器。
Adv Mater. 2018 Apr;30(15):e1705061. doi: 10.1002/adma.201705061. Epub 2018 Feb 14.
7
Magnetic Microlassos for Reversible Cargo Capture, Transport, and Release.磁性微管用于可逆货物捕获、运输和释放。
Langmuir. 2017 Jun 13;33(23):5932-5937. doi: 10.1021/acs.langmuir.7b00357. Epub 2017 Mar 27.
8
General Model of Hindered Diffusion.受阻扩散的通用模型。
J Phys Chem Lett. 2016 Nov 3;7(21):4317-4321. doi: 10.1021/acs.jpclett.6b02275. Epub 2016 Oct 20.
9
Biomedical Applications of Untethered Mobile Milli/Microrobots.无束缚移动毫/微型机器人的生物医学应用
Proc IEEE Inst Electr Electron Eng. 2015 Feb;103(2):205-224. doi: 10.1109/JPROC.2014.2385105. Epub 2015 Mar 24.
10
Artificial Swimmers Propelled by Acoustically Activated Flagella.声激活鞭毛驱动的人工游泳者。
Nano Lett. 2016 Aug 10;16(8):4968-74. doi: 10.1021/acs.nanolett.6b01601. Epub 2016 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验