Suppr超能文献

一种用于磁微轮控制与组装的实验设计。

An experimental design for the control and assembly of magnetic microwheels.

作者信息

Roth E J, Zimmermann C J, Disharoon D, Tasci T O, Marr D W M, Neeves K B

机构信息

Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA.

Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA.

出版信息

Rev Sci Instrum. 2020 Sep 1;91(9):093701. doi: 10.1063/5.0010805.

Abstract

Superparamagnetic colloidal particles can be reversibly assembled into wheel-like structures called microwheels (μwheels), which roll on surfaces due to friction and can be driven at user-controlled speeds and directions using rotating magnetic fields. Here, we describe the hardware and software to create and control the magnetic fields that assemble and direct μwheel motion and the optics to visualize them. Motivated by portability, adaptability, and low-cost, an extruded aluminum heat-dissipating frame incorporating open optics and audio speaker coils outfitted with high magnetic permeability cores was constructed. Open-source software was developed to define the magnitude, frequency, and orientation of the magnetic field, allowing for real-time joystick control of μwheels through two-dimensional (2D) and three-dimensional (3D) fluidic environments. With this combination of hardware and software, μwheels translate at speeds up to 50 µm/s through sample sizes up to 5 × 5 × 5 cm using 0.75 mT-2.5 mT magnetic fields with rotation frequencies of 5 Hz-40 Hz. Heat dissipation by aluminum coil clamps maintained sample temperatures within 3 °C of ambient temperature, a range conducive for biological applications. With this design, μwheels can be manipulated and imaged in 2D and 3D networks at length scales of micrometers to centimeters.

摘要

超顺磁性胶体颗粒可以可逆地组装成称为微轮(μ轮)的轮状结构,这些微轮由于摩擦力在表面滚动,并且可以使用旋转磁场以用户控制的速度和方向驱动。在这里,我们描述了用于创建和控制组装及引导μ轮运动的磁场的硬件和软件,以及用于可视化它们的光学器件。出于便携性、适应性和低成本的考虑,构建了一个带有开放式光学器件和配备高磁导率磁芯的音频扬声器线圈的挤压铝散热框架。开发了开源软件来定义磁场的大小、频率和方向,从而允许通过二维(2D)和三维(3D)流体环境对μ轮进行实时操纵杆控制。通过这种硬件和软件的组合,μ轮在0.75 mT - 2.5 mT的磁场和5 Hz - 40 Hz的旋转频率下,能够以高达50 µm/s的速度在尺寸达5×5×5 cm的样品中移动。铝线圈夹的散热使样品温度保持在环境温度的3°C范围内,这一温度范围有利于生物应用。通过这种设计,μ轮可以在微米到厘米的长度尺度上在二维和三维网络中进行操纵和成像。

相似文献

3
ac/dc Magnetic Fields for Enhanced Translation of Colloidal Microwheels.用于增强胶体微轮平移的交流/直流磁场。
Langmuir. 2019 Mar 5;35(9):3455-3460. doi: 10.1021/acs.langmuir.8b04084. Epub 2019 Feb 19.
7
Magnetic assembly route to colloidal responsive photonic nanostructures.磁组装法制备胶体响应光子纳米结构。
Acc Chem Res. 2012 Sep 18;45(9):1431-40. doi: 10.1021/ar200276t. Epub 2012 May 11.

引用本文的文献

2
Delivery and actuation of aerosolized microbots.雾化微型机器人的递送与驱动
Nano Sel. 2022 Jul;3(7):1185-1191. doi: 10.1002/nano.202100353. Epub 2022 Mar 7.
3
Magnetically powered microwheel thrombolysis of occlusive thrombi in zebrafish.磁驱动微滚轮对斑马鱼阻塞性血栓的溶栓作用。
Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2315083121. doi: 10.1073/pnas.2315083121. Epub 2024 Feb 26.

本文引用的文献

3
ac/dc Magnetic Fields for Enhanced Translation of Colloidal Microwheels.用于增强胶体微轮平移的交流/直流磁场。
Langmuir. 2019 Mar 5;35(9):3455-3460. doi: 10.1021/acs.langmuir.8b04084. Epub 2019 Feb 19.
5
Magnetic Microlassos for Reversible Cargo Capture, Transport, and Release.磁性微管用于可逆货物捕获、运输和释放。
Langmuir. 2017 Jun 13;33(23):5932-5937. doi: 10.1021/acs.langmuir.7b00357. Epub 2017 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验