Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA.
Cell Signaling Technologies, Danvers, MA 01923, USA.
Cell Rep. 2019 Feb 5;26(6):1557-1572.e8. doi: 10.1016/j.celrep.2019.01.057.
Acyl CoA metabolites derived from the catabolism of carbon fuels can react with lysine residues of mitochondrial proteins, giving rise to a large family of post-translational modifications (PTMs). Mass spectrometry-based detection of thousands of acyl-PTMs scattered throughout the proteome has established a strong link between mitochondrial hyperacylation and cardiometabolic diseases; however, the functional consequences of these modifications remain uncertain. Here, we use a comprehensive respiratory diagnostics platform to evaluate three disparate models of mitochondrial hyperacylation in the mouse heart caused by genetic deletion of malonyl CoA decarboxylase (MCD), SIRT5 demalonylase and desuccinylase, or SIRT3 deacetylase. In each case, elevated acylation is accompanied by marginal respiratory phenotypes. Of the >60 mitochondrial energy fluxes evaluated, the only outcome consistently observed across models is a ∼15% decrease in ATP synthase activity. In sum, the findings suggest that the vast majority of mitochondrial acyl PTMs occur as stochastic events that minimally affect mitochondrial bioenergetics.
酰基辅酶 A 代谢物来源于碳燃料的分解代谢,可以与线粒体蛋白的赖氨酸残基反应,产生一大类翻译后修饰(PTMs)。基于质谱的检测方法可以在整个蛋白质组中检测到数千种酰基-PTMs,这表明线粒体过度酰化与心脏代谢疾病之间存在密切联系;然而,这些修饰的功能后果仍然不确定。在这里,我们使用综合呼吸诊断平台来评估三种不同的小鼠心脏中线粒体过度酰化模型:由丙二酰辅酶 A 脱羧酶(MCD)、SIRT5 脱氰胺酶和脱琥珀酸酶的基因缺失,或 SIRT3 脱乙酰酶引起的模型。在每种情况下,酰基化水平升高伴随着轻微的呼吸表型。在评估的 >60 种线粒体能量通量中,仅在模型中一致观察到的结果是 ATP 合酶活性降低约 15%。总之,这些发现表明,绝大多数线粒体酰基 PTMs 是随机发生的事件,对线粒体生物能学的影响极小。