Suppr超能文献

CT 纹理分析:预测肾透明细胞癌 Fuhrman 分级的潜在工具。

CT texture analysis: a potential tool for predicting the Fuhrman grade of clear-cell renal carcinoma.

机构信息

Department of Radiology, First Affiliated Hospital of College of Medical Science, Zhejiang University, Hangzhou, 310003, Zhejiang, China.

Department of Radiology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, 310003, China.

出版信息

Cancer Imaging. 2019 Feb 6;19(1):6. doi: 10.1186/s40644-019-0195-7.

Abstract

BACKGROUND

The purpose of this study was to analyze the image heterogeneity of clear-cell renal-cell carcinoma (ccRCC) by computer tomography texture analysis and to provide new objective quantitative imaging parameters for the pre-operative prediction of Fuhrman-grade ccRCC.

METHODS

A retrospective analysis of 131 cases of ccRCCs was performed by manually depicting tumor areas. Then, histogram-based texture parameters were calculated. The texture-feature values between Fuhrman low- (Grade I-II) and high-grade (Grade III-IV) ccRCCs were compared by two independent sample t-tests (False Discovery Rate correction), and receiver operating characteristic curve (ROC) was used to evaluate the efficacy of using texture features to predict Fuhrman high- and low-grade ccRCCs.

RESULTS

There were no statistical differences for any texture parameters without filtering (p > 0.05). There was a statistically significant difference between the entropy (fine) of the corticomedullary phase and the entropy (fine and coarse) of the nephrographic phase after Laplace of Gaussian filtering. The area under the ROC of the entropy was between 0.74 and 0.83.

CONCLUSIONS

Computer tomography texture features can predict the Fuhrman grading of ccRCC pre-operatively, with entropy being the most important imaging marker for clinical application.

摘要

背景

本研究旨在通过计算机断层扫描纹理分析分析透明细胞肾细胞癌(ccRCC)的图像异质性,并为术前预测 Fuhrman 级 ccRCC 提供新的客观定量成像参数。

方法

对 131 例 ccRCC 病例进行回顾性分析,通过手动描绘肿瘤区域。然后,计算基于直方图的纹理参数。通过两独立样本 t 检验(False Discovery Rate 校正)比较 Fuhrman 低级别(I-II 级)和高级别(III-IV 级)ccRCC 之间的纹理特征值,并使用接收者操作特征曲线(ROC)评估使用纹理特征预测 Fuhrman 高级别和低级别 ccRCC 的效果。

结果

未过滤的任何纹理参数之间均无统计学差异(p>0.05)。经过拉普拉斯高斯滤波后的皮质髓质期的熵(精细)和肾实质期的熵(精细和粗糙)之间存在统计学差异。ROC 曲线下面积在 0.74 到 0.83 之间。

结论

计算机断层扫描纹理特征可预测 ccRCC 的 Fuhrman 分级,其中熵是最有临床应用价值的成像标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91d3/6364463/85388aa63406/40644_2019_195_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验