Suppr超能文献

纹理分析和机器学习算法可准确预测小(<4cm)透明细胞肾细胞癌的组织学分级:一项初步研究。

Texture analysis and machine learning algorithms accurately predict histologic grade in small (< 4 cm) clear cell renal cell carcinomas: a pilot study.

机构信息

Department of Radiology, George Washington University Hospital, 900 23rd St NW, Washington, DC, 20037, USA.

Department of Biomedical Engineering, George Washington University, 800 22nd Street NW, 5000 Science & Engineering Hall, Washington, DC, 20052, USA.

出版信息

Abdom Radiol (NY). 2020 Mar;45(3):789-798. doi: 10.1007/s00261-019-02336-1.

Abstract

PURPOSE

To predict the histologic grade of small clear cell renal cell carcinomas (ccRCCs) using texture analysis and machine learning algorithms.

METHODS

Fifty-two noncontrast (NC), 26 corticomedullary (CM) phase, and 35 nephrographic (NG) phase CTs of small (< 4 cm) surgically resected ccRCCs were retrospectively identified. Surgical pathology classified the tumors as low- or high-Fuhrman histologic grade. The axial image with the largest cross-sectional tumor area was exported and segmented. Six histogram and 31 texture (gray-level co-occurrences (GLC) and gray-level run-lengths (GLRL)) features were calculated for each tumor in each phase. T testing compared feature values in low- and high-grade ccRCCs, with a (Benjamini-Hochberg) false discovery rate of 10%. Area under the receiver operating curve (AUC) was calculated for each feature to assess prediction of low- and high-grade ccRCCs in each phase. Histogram, texture, and combined histogram and texture data sets were used to train and test four algorithms (k-nearest neighbor (KNN), support vector machine (SVM), random forests, and decision tree) with tenfold cross-validation; AUCs were calculated for each algorithm in each phase to assess prediction of low- and high-grade ccRCCs.

RESULTS

Zero, 23, and 0 features in the NC, CM, and NG phases had statistically significant differences between low and high-grade ccRCCs. CM histogram skewness and GLRL short run emphasis had the highest AUCs (0.82) in predicting histologic grade. All four algorithms had the highest AUCs (0.97) predicting histologic grade using CM histogram features. The algorithms' AUCs decreased using histogram or texture features from NC or NG phases.

CONCLUSION

The histologic grade of small ccRCCs can be accurately predicted with machine learning algorithms using CM histogram features, which outperform NC and NG phase image data.

摘要

目的

利用纹理分析和机器学习算法预测小透明细胞肾细胞癌(ccRCC)的组织学分级。

方法

回顾性地确定了 52 例非对比(NC)、26 例皮质髓质(CM)期和 35 例肾实质(NG)期的小(<4cm)手术切除 ccRCC 的 CT。外科病理学将肿瘤分为低或高 Fuhrman 组织学分级。导出并分割具有最大肿瘤截面积的轴向图像。在每个相位的每个肿瘤中计算了 6 个直方图和 31 个纹理(灰度共生矩阵(GLC)和灰度游程长度(GLRL))特征。低级别和高级别 ccRCC 之间的特征值进行 t 检验,假发现率(Benjamini-Hochberg)为 10%。在每个相位中计算每个特征的接收者操作曲线(AUC)下面积,以评估低级别和高级别 ccRCC 的预测。使用四个算法(k 最近邻(KNN)、支持向量机(SVM)、随机森林和决策树)进行训练和测试,使用十折交叉验证,对直方图、纹理和组合直方图和纹理数据集进行训练和测试;在每个相位中计算每个算法的 AUC,以评估低级别和高级别 ccRCC 的预测。

结果

NC、CM 和 NG 期的 0、23 和 0 个特征在低级别和高级别 ccRCC 之间存在统计学差异。CM 直方图偏度和 GLRL 短游程重点在预测组织学分级方面具有最高的 AUC(0.82)。在使用 CM 直方图特征预测组织学分级方面,所有四个算法的 AUC 最高(0.97)。使用 NC 或 NG 期的直方图或纹理特征,算法的 AUC 降低。

结论

使用机器学习算法和 CM 直方图特征可以准确预测小 ccRCC 的组织学分级,CM 直方图特征优于 NC 和 NG 期图像数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验