The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel.
Commun Biol. 2019 Jan 30;2:42. doi: 10.1038/s42003-019-0286-9. eCollection 2019.
Autophosphorylation of receptor and non-receptor tyrosine kinases is a common molecular switch with broad implications for pathogeneses and therapy of cancer and other human diseases. Technologies for large-scale discovery and analysis of autophosphorylation are limited by the inherent difficulty to distinguish between phosphorylation and autophosphorylation in vivo and by the complexity associated with functional assays of receptors kinases in vitro. Here, we report a method for the direct detection and analysis of tyrosine autophosphorylation using integrated microfluidics and freshly synthesized protein arrays. We demonstrate the efficacy of our platform in detecting autophosphorylation activity of soluble and transmembrane tyrosine kinases, and the dependency of in vitro autophosphorylation assays on membranes. Our method, Integrated Microfluidics for Autophosphorylation Discovery (IMAD), is high-throughput, requires low reaction volumes and can be applied in basic and translational research settings. To our knowledge, it is the first demonstration of posttranslational modification analysis of membrane protein arrays.
受体和非受体酪氨酸激酶的自动磷酸化是一个常见的分子开关,对癌症和其他人类疾病的发病机制和治疗有广泛的影响。用于大规模发现和分析自动磷酸化的技术受到固有困难的限制,即在体内难以区分磷酸化和自动磷酸化,并且与体外受体激酶的功能测定相关的复杂性。在这里,我们报告了一种使用集成微流控和新合成的蛋白质阵列直接检测和分析酪氨酸自动磷酸化的方法。我们证明了我们的平台在检测可溶性和跨膜酪氨酸激酶的自动磷酸化活性方面的功效,以及体外自动磷酸化测定对膜的依赖性。我们的方法,即自动磷酸化发现的集成微流控(IMAD),具有高通量、需要低反应体积的特点,并可应用于基础和转化研究环境。据我们所知,这是首次展示膜蛋白阵列的翻译后修饰分析。