Suppr超能文献

埃博拉病毒贝叶斯机器学习模型带来新的体外研究线索。

Ebola Virus Bayesian Machine Learning Models Enable New in Vitro Leads.

作者信息

Anantpadma Manu, Lane Thomas, Zorn Kimberley M, Lingerfelt Mary A, Clark Alex M, Freundlich Joel S, Davey Robert A, Madrid Peter B, Ekins Sean

机构信息

Department of Virology and Immunology, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, Texas 78227, United States.

Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States.

出版信息

ACS Omega. 2019 Jan 31;4(1):2353-2361. doi: 10.1021/acsomega.8b02948. Epub 2019 Jan 30.

Abstract

We have previously described the first Bayesian machine learning models from FDA-approved drug screens, for identifying compounds active against the Ebola virus (EBOV). These models led to the identification of three active molecules in vitro: tilorone, pyronaridine, and quinacrine. A follow-up study demonstrated that one of these compounds, tilorone, has 100% in vivo efficacy in mice infected with mouse-adapted EBOV at 30 mg/kg/day intraperitoneal. This suggested that we can learn from the published data on EBOV inhibition and use it to select new compounds for testing that are active in vivo. We used these previously built Bayesian machine learning EBOV models alongside our chemical insights for the selection of 12 molecules, absent from the training set, to test for in vitro EBOV inhibition. Nine molecules were directly selected using the model, and eight of these molecules possessed a promising in vitro activity (EC < 15 μM). Three further compounds were selected for an in vitro evaluation because they were antimalarials, and compounds of this class like pyronaridine and quinacrine have previously been shown to inhibit EBOV. We identified the antimalarial drug arterolane (IC = 4.53 μM) and the anticancer clinical candidate lucanthone (IC = 3.27 μM) as novel compounds that have EBOV inhibitory activity in HeLa cells and generally lack cytotoxicity. This work provides further validation for using machine learning and medicinal chemistry expertize to prioritize compounds for testing in vitro prior to more costly in vivo tests. These studies provide further corroboration of this strategy and suggest that it can likely be applied to other pathogens in the future.

摘要

我们之前描述了首个源自美国食品药品监督管理局(FDA)批准的药物筛选的贝叶斯机器学习模型,用于识别对埃博拉病毒(EBOV)有活性的化合物。这些模型在体外鉴定出了三种活性分子:梯洛龙、咯萘啶和奎纳克林。一项后续研究表明,这些化合物之一的梯洛龙,在以30毫克/千克/天的剂量腹腔注射感染了小鼠适应性埃博拉病毒的小鼠中具有100%的体内疗效。这表明我们可以借鉴已发表的关于埃博拉病毒抑制的数据,并利用它来选择新的化合物进行体内活性测试。我们将这些先前构建的贝叶斯机器学习埃博拉病毒模型与我们的化学见解相结合,选择了12种未包含在训练集中的分子进行体外埃博拉病毒抑制测试。其中9种分子是直接使用模型选择的,并且这些分子中有8种具有良好的体外活性(半数有效浓度<15微摩尔)。另外选择了三种化合物进行体外评估,因为它们是抗疟药,并且像咯萘啶和奎纳克林这类药物此前已被证明可抑制埃博拉病毒。我们确定抗疟药蒿甲醚(半数抑制浓度=4.53微摩尔)和抗癌临床候选药物左旋吡喹酮(半数抑制浓度=3.27微摩尔)是在HeLa细胞中具有埃博拉病毒抑制活性且通常缺乏细胞毒性的新型化合物。这项工作为使用机器学习和药物化学专业知识在进行成本更高的体内测试之前对化合物进行体外测试优先级排序提供了进一步的验证。这些研究进一步证实了这一策略,并表明它未来可能应用于其他病原体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3cf/6647335/84ae45478d2b/ao-2018-02948y_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验