Nomura Yuki, Yamamoto Kazuo, Hirayama Tsukasa, Ouchi Satoru, Igaki Emiko, Saitoh Koh
Technology Innovation Division, Panasonic Corporation, 3-1-1 Yagumo-naka-machi, Moriguchi, 570-8501, Japan.
Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta, Nagoya, 456-8587, Japan.
Angew Chem Int Ed Engl. 2019 Apr 8;58(16):5292-5296. doi: 10.1002/anie.201814669. Epub 2019 Mar 12.
When two different materials come into contact, mobile carriers redistribute at the interface according to their potential difference. Such a charge redistribution is also expected at the interface between electrodes and solid electrolytes. The redistributed ions significantly affect the ion conduction through the interface. Thus, it is essential to determine the actual distribution of the ionic carriers and their potential to improve ion conduction. We succeeded in visualizing the ionic and potential profiles in the charge redistribution layer, or space-charge layer (SCL), formed at the interface between a Cu electrode and Li-conductive solid electrolyte using phase-shifting electron holography and spatially resolved electron energy-loss spectroscopy. These electron microscopy techniques clearly showed the Li-ionic SCL, which dropped by 1.3 V within a distance of 10 nm from the interface. These techniques could contribute to the development of next-generation electrochemical devices.
当两种不同材料接触时,移动载流子会根据它们的电位差在界面处重新分布。在电极与固体电解质的界面处也会发生这种电荷重新分布。重新分布的离子会显著影响通过界面的离子传导。因此,确定离子载流子的实际分布及其电位对于改善离子传导至关重要。我们利用相移电子全息术和空间分辨电子能量损失谱成功地可视化了在铜电极与锂导电固体电解质界面处形成的电荷重新分布层,即空间电荷层(SCL)中的离子和电位分布。这些电子显微镜技术清楚地显示了锂离子SCL,它在距界面10纳米的距离内下降了1.3伏。这些技术有助于下一代电化学装置的开发。