Park Byoung-Nam
Department of Materials Science and Engineering, Hongik University, 72-1, Sangsu-dong, Mapo-gu, Seoul 04066, Republic of Korea.
Materials (Basel). 2024 Oct 14;17(20):5014. doi: 10.3390/ma17205014.
In this study, we fabricated a Li-metal all-solid-state battery (ASSB) with a low mass loading of NMC111 cathode electrode, enabling a sensitive evaluation of interfacial electrochemical reactions and their impact on battery performance, using LiAlTi(PO) (LATP) as the solid electrolyte. The electrochemical behavior of the battery was analyzed to understand how the solid electrolyte influences charge storage mechanisms and Li-ion transport at the electrolyte/electrode interface. Cyclic voltammetry (CV) measurements revealed the -values of 0.76 and 0.58, indicating asymmetry in the charge storage process. A diffusion coefficient of 1.5 × 10 cm⋅s (oxidation) was significantly lower compared to Li-NMC111 batteries with liquid electrolytes, 1.6 × 10cm⋅s (oxidation), suggesting that the asymmetric charge storage mechanisms are closely linked to reduced ionic transport and increased interfacial resistance in the solid electrolyte. This reduced Li-ion diffusivity, along with the formation of space charge layers at the electrode/electrolyte interface, contributes to the observed asymmetry in charge and discharge processes and limits the rate capability of the solid-state battery, particularly at high charging rates, compared to its liquid electrolyte counterpart.
在本研究中,我们使用LiAlTi(PO)(LATP)作为固体电解质,制造了一种具有低质量负载NMC111阴极电极的锂金属全固态电池(ASSB),从而能够灵敏地评估界面电化学反应及其对电池性能的影响。对该电池的电化学行为进行了分析,以了解固体电解质如何影响电荷存储机制以及电解质/电极界面处的锂离子传输。循环伏安法(CV)测量显示其值为0.76和0.58,表明电荷存储过程中存在不对称性。与使用液体电解质的Li-NMC111电池(氧化时为1.6×10cm⋅s)相比,1.5×10 cm⋅s(氧化)的扩散系数显著更低,这表明不对称电荷存储机制与固体电解质中离子传输减少和界面电阻增加密切相关。这种降低的锂离子扩散率,以及电极/电解质界面处空间电荷层的形成,导致了观察到的充放电过程中的不对称性,并限制了固态电池的倍率性能,特别是与使用液体电解质的同类电池相比,在高充电速率下更是如此。