a Center for Biologics Evaluation and Research , Food and Drug Administration , Silver Spring , MD , USA.
Nanotoxicology. 2019 Jun;13(5):664-681. doi: 10.1080/17435390.2019.1570373. Epub 2019 Feb 7.
Different nanomaterials are under development for various biomedical applications in which nanoparticles contact blood and vasculature. Therefore, investigating the interactions between nanomaterials and vascular endothelial cells (ECs) is of great importance. Here, we show the effects of polyamidoamine (PAMAM) dendrimers of two different sizes, generation 2 (G2; approximately 3nm diameter) and generation 7 (G7; 9nm), with neutral (OH-terminated), anionic (COOH-terminated), and cationic (NH-terminated) surface modifications on cultured human umbilical vein ECs (HUVECs). We found that only cationic dendrimers (5-100μg/mL G7-NH and 100µg/mL G2-NH) and not anionic or neutral dendrimers were cytotoxic to HUVECs. In addition, cationic dendrimers at low concentrations (5μg/mL) markedly increased the HUVEC surface expression of the proinflammatory activation marker ICAM-1 and phosphatidylserine (PS). Both G2-NH and G7-NH dendrimers caused 1 arrest, but only G7-NH dendrimers induced significant HUVEC apoptosis. G7-NH interacted strongly with HUVEC plasma membranes and mitochondrial membranes, and phospholipid vesicles containing G7-NH formed, which resulted in extensive plasma membrane blebbing and disintegration. Furthermore, flow cytometric analysis showed that G7-NH-treated HUVECs released large numbers of extracellular vesicles (EVs) positive for CD105 and PS. A notable population of EVs positive for the mitochondrial marker TOM20 but negative for the autophagosome marker LC3 was found. In summary, large cationic PAMAM dendrimers (G7-NH) showed both proinflammatory and proapoptotic effects in ECs; at high dendrimer concentrations, these effects were accompanied by necrotic cytotoxicity. G7-NH caused plasma and mitochondrial membrane disintegration and the release of EVs, including EVs of mitochondrial origin that were not associated with mitophagy.
不同的纳米材料正在被开发用于各种生物医学应用,其中纳米颗粒与血液和血管相互作用。因此,研究纳米材料与血管内皮细胞(EC)之间的相互作用非常重要。在这里,我们展示了两种不同大小的聚酰胺胺(PAMAM)树突的影响,第二代(G2;直径约 3nm)和第七代(G7;9nm),具有中性(末端为-OH)、阴离子(末端为-COOH)和阳离子(末端为-NH2)表面修饰,对培养的人脐静脉内皮细胞(HUVEC)的影响。我们发现,只有阳离子树突(5-100μg/mL G7-NH 和 100μg/mL G2-NH)而不是阴离子或中性树突对 HUVEC 具有细胞毒性。此外,低浓度的阳离子树突(5μg/mL)显著增加了 HUVEC 表面促炎激活标志物 ICAM-1 和磷脂酰丝氨酸(PS)的表达。G2-NH 和 G7-NH 树突均导致细胞周期停滞,但只有 G7-NH 树突诱导 HUVEC 凋亡。G7-NH 与 HUVEC 质膜和线粒体膜强烈相互作用,并且含有 G7-NH 的磷脂囊泡形成,导致广泛的质膜起泡和崩解。此外,流式细胞术分析表明,G7-NH 处理的 HUVEC 释放了大量 CD105 和 PS 阳性的细胞外囊泡(EVs)。发现了大量 EVs 阳性的线粒体标志物 TOM20,但阴性的自噬体标志物 LC3。总之,大的阳离子 PAMAM 树突(G7-NH)在 EC 中表现出促炎和促凋亡作用;在高树突浓度下,这些作用伴随着坏死细胞毒性。G7-NH 导致质膜和线粒体膜的崩解以及 EV 的释放,包括与噬线粒体无关的 EV。